
CYBERDYNE:
Automatic bug-finding at
scale

Peter Goodman

COUNTERMEASURE 2016

2

 Finds bug in binaries

 Combines different techniques

 Coverage-guided fuzzing
 Symbolic execution

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cyberdyne (ex)terminates bugs

3

 Part 1: high level architecture
 How to coordinate bug-finding tools

 Part 2: low level tools
 How do the bug-finding tools work?

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Get to know the mind of the machine

4Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

History: Cyber Grand Challenge (1)

5Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

 Capture-the-flag (CTF) competition

 Goal: find and exploit bugs in binaries

 Goal: patch binaries

 Competitors were programs

 “Cyber Reasoning Systems” (CRS)

History: Cyber Grand Challenge (2)

6Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

 Shaped the design of Cyberdyne

 Distributed system
 Runs on any number of nodes

 Automated system
 No human intervention required

History: Cyber Grand Challenge (3)

Part 1
Skeleton of a bug-finding

system

7Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

8

 Find bugs
 Simple, right?

 Work on real programs

 Be easy to scale

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Ideally, a bug-finding system should …

9Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

When I grow up …

10Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

First kill: simple fuzzing (1)

Splice

Slice

Bit
flips

Byte
flips

Seed Inputs
Mutation

Engine
Mutated Inputs

11Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

First kill: simple fuzzing (1)

Seed Inputs
Mutation

Engine
Mutated Inputs

Radamsa,
zzuf,
etc.

12Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

First kill: simple fuzzing (2)

 Mutate inputs

Execute inputs

…

Profit?
 Find bugs!

12 1
2

3

4
567

8
9

10
11

Terminator

pag@sloth:~/ cyberdyne start
pag@sloth:~/ cyberdyne analyze –program
foo –binaries bar
pag@sloth:~/ cyberdyne seed –program foo –
inputs ./inputs/*

13Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

First kill: simple fuzzing (2)

 Mutate inputs

 Execute inputs

…

Profit?
 Find bugs!

12 1
2

3

4
567

8
9

10
11

Terminator

pag@sloth:~/ cyberdyne start
pag@sloth:~/ cyberdyne analyze –program
foo –binaries bar
pag@sloth:~/ cyberdyne seed –program foo –
inputs ./inputs/*

14Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

First kill: simple fuzzing (2)

 Mutate inputs

 Execute inputs

…

Profit?
 Find bugs!

12 1
2

3

4
567

8
9

10
11

Terminator

pag@sloth:~/ cyberdyne start
pag@sloth:~/ cyberdyne analyze –program
foo –binaries bar
pag@sloth:~/ cyberdyne seed –program foo –
inputs ./inputs/*

15Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

First kill: simple fuzzing (2)

 Mutate inputs

 Execute inputs

…

Profit?
 Find bugs!
 Right????

12 1
2

3

4
567

8
9

10
11

Terminator

pag@sloth:~/ cyberdyne start
pag@sloth:~/ cyberdyne analyze –program
foo –binaries bar
pag@sloth:~/ cyberdyne seed –program foo –
inputs ./inputs/*

16Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

First kill: simple fuzzing (2)

Terminator

pag@sloth:~/ cyberdyne start
pag@sloth:~/ cyberdyne analyze –program
foo –binaries bar
pag@sloth:~/ cyberdyne seed –program foo –
inputs ./inputs/*

 Mutate inputs

 Execute inputs

…

Risk of loss!
 No bugs found
 Lost cycles, time

17

 Searching for bugs takes time

 Need accountability
 Is it worth it to keep searching?
 Is progress being made?

 How do we measure progress?

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Misfire: Check your targets

18

 Idea: has something new happened?

 Track when new code is executed
 Code coverage: Instrument program to

detect when new code is executed
 Inputs that cover new code signal

progress

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Reload: Track bug-finding progress

19

 Eventually hit a “coverage ceiling”
 Decreasing marginal returns

 Need heavier guns
 Coverage-guided fuzzing: re-seed with

inputs that got new coverage (next)
 Symbolic execution (later)

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Need more ammo

Crashes!

20Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Coverage-guided mutational fuzzing (1)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

Step 1
Mutate
inputs

Step 2
Execute
mutations

Step 3
Gets new
Coverage?

Step 4
Re-seed
mutator

Crashes!

21Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Coverage-guided mutational fuzzing (1)

Step 1
Mutate
inputs

Step 2
Execute
mutations

Step 3
Gets new
Coverage?

Step 4
Re-seed
mutator

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukesAFL

22

 Trivially parallelizable
 Run mutation engines concurrently

 Scaling fuzzing in Cyberdyne
 Fuzzer service internalizes mutation,

execution, code coverage
 Runs many fuzzers, one mutator each

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Coverage-guided mutational fuzzing (2)

Look under the skin of Cyberdyne (1)

23Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

24Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Look under the skin of Cyberdyne (2)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

25Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Look under the skin of Cyberdyne (3)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

Fuzzer (with GRR)

 Mutates and

executes inputs

 Easy to scale

26Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Look under the skin of Cyberdyne (4)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

PySymEmu

 Coverage-guided

binary symbolic

executor

 Harder to scale

27Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Look under the skin of Cyberdyne (5)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

KLEE (with McSema)

 LLVM bitcode

symbolic executor

 Hard to use

 Hard to scale

28Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Look under the skin of Cyberdyne (6)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

Oracle

 Gatekeeper

for minset

 Detects crashes

 Easy to scale

29Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Look under the skin of Cyberdyne (7)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

Minset

 Finds inputs that get

new code coverage

 One input at a time

 Bottleneck?

Part 2
The servos and the gears

30Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

31

 What is it?
 Minimum set of inputs that produce

maximum code coverage

 Why use it?
 Identify “interesting” inputs
 Good candidates for exploration

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

How it works: Minset (1)

32Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com

How it works: Minset (2)

2

3
4

4
3

1 2 3 4

2
1 1

3
4

33Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com

How it works: Minset (3)

2

4
3

1 2 3 4

1
2

1

4

2

3

34Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com

How it works: Minset (4)

4

1 2 3 4

1
3

2
1

𝐶𝑜𝑣(𝐼3) ⊆ 𝐶𝑜𝑣(𝐼1) ∪ 𝐶𝑜𝑣(𝐼2)

2

3

35Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com

How it works: Minset (5)

4

1 2 3 4

3
2

1 4 1

36

 Redundancy within the Minset
 First input tested guaranteed entry
 Newly added inputs tend to cover

same code as old inputs

 Idea: fold the minset
 Reconstruct it in reverse order

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

How it works: Minset (6)

2

37Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com

How it works: Minset (7)

124

1

1
2

4 4

1

2

38Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com

How it works: Minset (8)

124

1
2

4 4

2

1

39Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com

How it works: Minset (9)

124

2
4 4 1

𝐶𝑜𝑣(𝐼1) ⊆ 𝐶𝑜𝑣(𝐼4) ∪ 𝐶𝑜𝑣(𝐼2)

40

 Corpus distillation is fast and easy
 If bottleneck, map and reduce

 What they don’t tell you
 What you measure is important
 Different metrics, different features
 Fold to compose metrics/features

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

How it works: Minset (10)

41

 Minset is friendly
 Doesn’t care who or what produced

the inputs (e.g. fuzzer, symexec)

 Challenge: cooperation
 Make two independent bug-finding

tools coordinate to discover bugs

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

The gears don’t fit

42Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cooperation among friends (1)

Symbolic executor
produces an input

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

ssssss
ssssss

43Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cooperation among friends (2)

Input from symexec
is added to minset

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

44Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cooperation among friends (3)

Input from symexec
seeds the fuzzer

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

45Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cooperation among friends (4)

Fuzzer mutates input
from symexec

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

46Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cooperation among friends (5)

Mutated input is
added to the minset

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

47Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cooperation among friends (6)

How do we symexec
a fuzzed input?

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

48Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cooperation among friends (7)

Easy way to scale:
partial symexec

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

ssssss
ssssss

49

 Symbolic executors are monolithic

 Reason about all program paths
 Somehow use theorem provers
 Bugs fall out the other end…?

 Challenge: make symexec

cooperate in a scalable way
Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Some friendships are a lot of work

50

 All input bytes are “symbols”

 Fork execution when if-then-else

branch depends on symbolic input

 Follow feasible branches, record

tested constraints down each path

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

How it works: symbolic execution (1)

51

 Special kind of CPU emulator
 Registers/memory can hold bytes,

symbols, or symbolic expressions
 Instructions emulated in software
 Simulates operations of instructions to

work with symbols and bytes

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

How it works: symbolic execution (2)

How it works: symbolic execution (3)

52Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

eax = BitVec(32) symbol ϵ [-231, 231-1]

How it works: symbolic execution (4)

53Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

eax = BitVec(32) symbol ϵ [-231, 231-1]

eax >= 0xa
symbol ϵ [10, 231-1)

eax < 0xa
symbol ϵ [-231, 10)

How it works: symbolic execution (5)

54Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

eax = BitVec(32) symbol ϵ [-231, 231-1]

eax >= 0xa
symbol ϵ [10, 231-1)

return

eax < 0xa
symbol ϵ [-231, 10)

symbol ϵ [0, 10)
jump with table

symbol ϵ [-231, 0)
error?!

There’s too many of them!

55Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

56

 Symbolic executors fork a lot!

 Branches, loops, branches in loops
 Takes too long to get deep into the

program, only finds shallow bugs
 Heuristics, like coverage-guided

exploration, are band-aids

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Symbolic execution is hard to scale

57

 Partial symbolic execution

 Jump deep into a program using a
concrete input prefix

 Trivially parallelizable

 Run independent symbolic
executors with different prefixes

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Easy way to scale symbolic execution

End of days

58Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

59Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Skeleton of a bug-finding system (1)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

ssssss
ssssss

ssssss
ssssss

ssssss
ssssss

60

 Started with simple fuzzing

 Added accountability

 Coverage-guided mutational fuzzing

 Sets groundwork for new tools

 Going from there

 Minset as the mediator
Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Skeleton of a bug-finding system (2)

61

 Mediating with the minset

 Fuzzer cooperates with anything
 Symbolic executors need a bit

more massaging

 The path to scalability

 Go for trivial parallelization
Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

The servos and the gears

Cyberdyne kills bugs...now you can too!

62Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Let’s chat

peter@trailofbits.com

Senior Security Engineer

Peter Goodman

