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 Finds bug in binaries

 Combines different techniques

 Coverage-guided fuzzing
 Symbolic execution
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Cyberdyne (ex)terminates  bugs
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 Part 1: high level architecture
 How to coordinate bug-finding tools

 Part 2: low level tools
 How do the bug-finding tools work?

Trail of Bits  |  CYBERDYNE: Automatic Bug-Finding at Scale  |  11.17.2016  |  trailofbits.com

Get  to  know  the  mind  of  the  machine
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History: Cyber  Grand  Challenge  (1)
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 Capture-the-flag (CTF) competition

 Goal: find and exploit bugs in binaries

 Goal: patch binaries

 Competitors were programs

 “Cyber Reasoning Systems” (CRS)

History: Cyber  Grand  Challenge  (2)
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 Shaped the design of Cyberdyne

 Distributed system
 Runs on any number of nodes

 Automated system
 No human intervention required

History:  Cyber Grand  Challenge  (3)



Part  1
Skeleton  of  a  bug-finding  

system
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 Find bugs
 Simple, right?

 Work on real programs

 Be easy to scale

Trail of Bits  |  CYBERDYNE: Automatic Bug-Finding at Scale  |  11.17.2016  |  trailofbits.com

Ideally, a  bug-finding  system should …
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When  I  grow  up …
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First  kill:  simple  fuzzing  (1)

Splice

Slice

Bit 
flips

Byte 
flips

Seed Inputs
Mutation 

Engine
Mutated Inputs
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First  kill:  simple  fuzzing  (1)

Seed Inputs
Mutation 

Engine
Mutated Inputs

Radamsa,
zzuf,
etc.
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First  kill:  simple  fuzzing  (2)

 Mutate inputs

Execute inputs

…

Profit?
 Find bugs!
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Terminator

pag@sloth:~/ cyberdyne start
pag@sloth:~/ cyberdyne analyze –program 
foo –binaries bar
pag@sloth:~/ cyberdyne seed –program foo –
inputs ./inputs/* 
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First  kill:  simple  fuzzing  (2)

 Mutate inputs

 Execute inputs

…
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First  kill:  simple  fuzzing  (2)

 Mutate inputs

 Execute inputs
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First  kill:  simple  fuzzing  (2)

 Mutate inputs

 Execute inputs

…

Profit?
 Find bugs!
 Right????
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First  kill:  simple  fuzzing  (2)







Terminator

pag@sloth:~/ cyberdyne start
pag@sloth:~/ cyberdyne analyze –program 
foo –binaries bar
pag@sloth:~/ cyberdyne seed –program foo –
inputs ./inputs/* 

 Mutate inputs

 Execute inputs

…

Risk of loss!
 No bugs found
 Lost cycles, time
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 Searching for bugs takes time

 Need accountability
 Is it worth it to keep searching?
 Is progress being made?

 How do we measure progress?
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Misfire:  Check  your  targets
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 Idea: has something new happened?

 Track when new code is executed
 Code coverage: Instrument program to 

detect when new code is executed
 Inputs that cover new code signal 

progress
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Reload:  Track  bug-finding  progress
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 Eventually hit a “coverage ceiling”
 Decreasing marginal returns

 Need heavier guns
 Coverage-guided fuzzing: re-seed with 

inputs that got new coverage (next)
 Symbolic execution (later)
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Need  more  ammo



Crashes!
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Coverage-guided  mutational  fuzzing  (1)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

Step 1
Mutate
inputs

Step 2
Execute 
mutations

Step 3
Gets new
Coverage?

Step 4
Re-seed
mutator



Crashes!
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Coverage-guided  mutational  fuzzing  (1)

Step 1
Mutate
inputs

Step 2
Execute 
mutations

Step 3
Gets new
Coverage?

Step 4
Re-seed
mutator

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukesAFL
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 Trivially parallelizable
 Run mutation engines concurrently 

 Scaling fuzzing in Cyberdyne
 Fuzzer service internalizes mutation, 

execution, code coverage
 Runs many fuzzers, one mutator each
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Coverage-guided  mutational  fuzzing  (2)



Look  under  the  skin  of  Cyberdyne  (1)
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Look  under  the  skin  of  Cyberdyne  (2)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes
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Look  under  the  skin  of  Cyberdyne  (3)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

Fuzzer (with GRR)

 Mutates and 

executes inputs

 Easy to scale
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Look  under  the  skin  of  Cyberdyne  (4)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

PySymEmu

 Coverage-guided 

binary symbolic 

executor

 Harder to scale
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Look  under  the  skin  of  Cyberdyne  (5)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

KLEE (with McSema)

 LLVM bitcode 

symbolic executor

 Hard to use

 Hard to scale
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Look  under  the  skin  of  Cyberdyne  (6)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

Oracle

 Gatekeeper

for minset

 Detects crashes

 Easy to scale
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Look  under  the  skin  of  Cyberdyne  (7)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

Minset

 Finds inputs that get 

new code coverage

 One input at a time

 Bottleneck?



Part  2
The  servos  and  the  gears
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 What is it?
 Minimum set of inputs that produce 

maximum code coverage

 Why use it?
 Identify “interesting” inputs
 Good candidates for exploration

Trail of Bits  |  CYBERDYNE: Automatic Bug-Finding at Scale  |  11.17.2016  |  trailofbits.com

How  it  works:  Minset  (1)
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How  it  works:  Minset  (2)
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How  it  works:  Minset  (3)
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How  it  works:  Minset  (4)
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𝐶𝑜𝑣(𝐼3) ⊆ 𝐶𝑜𝑣(𝐼1) ∪ 𝐶𝑜𝑣(𝐼2)
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How  it  works:  Minset  (5)

4

1 2 3 4

3
2

1 4 1
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 Redundancy within the Minset
 First input tested guaranteed entry 
 Newly added inputs tend to cover 

same code as old inputs

 Idea: fold the minset
 Reconstruct it in reverse order
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How  it  works:  Minset  (6)



2
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How  it  works:  Minset  (7)
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How  it  works:  Minset  (8)
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How  it  works:  Minset  (9)
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2
4 4 1

𝐶𝑜𝑣(𝐼1) ⊆ 𝐶𝑜𝑣(𝐼4) ∪ 𝐶𝑜𝑣(𝐼2)
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 Corpus distillation is fast and easy
 If bottleneck, map and reduce

 What they don’t tell you
 What you measure is important
 Different metrics, different features
 Fold to compose metrics/features
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How  it  works:  Minset  (10)
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 Minset is friendly
 Doesn’t care who or what produced 

the inputs (e.g. fuzzer, symexec)

 Challenge: cooperation
 Make two independent bug-finding 

tools coordinate to discover bugs
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The  gears  don’t  fit
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Cooperation  among  friends  (1)

Symbolic executor 
produces an input

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

ssssss
ssssss
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Cooperation  among  friends  (2)

Input from symexec 
is added to minset

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes
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Cooperation  among  friends  (3)

Input from symexec 
seeds the fuzzer

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes
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Cooperation  among  friends  (4)

Fuzzer mutates input 
from symexec

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes
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Cooperation  among  friends  (5)

Mutated input is 
added to the minset

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes
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Cooperation  among  friends  (6)

How do we symexec 
a fuzzed input?

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes
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Cooperation  among  friends  (7)

Easy way to scale: 
partial symexec

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

ssssss
ssssss
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 Symbolic executors are monolithic

 Reason about all program paths
 Somehow use theorem provers
 Bugs fall out the other end…?

 Challenge: make symexec 

cooperate in a scalable way
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Some  friendships  are  a  lot  of  work
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 All input bytes are “symbols”

 Fork execution when if-then-else 

branch depends on symbolic input

 Follow feasible branches, record 

tested constraints down each path
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How  it  works:  symbolic  execution  (1)
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 Special kind of CPU emulator
 Registers/memory can hold bytes, 

symbols, or symbolic expressions
 Instructions emulated in software
 Simulates operations of instructions to 

work with symbols and bytes
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How  it  works:  symbolic  execution  (2)



How  it  works:  symbolic  execution  (3)
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eax = BitVec(32)   symbol ϵ [-231, 231-1]



How  it  works:  symbolic  execution  (4)
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eax = BitVec(32)   symbol ϵ [-231, 231-1]

eax >= 0xa
symbol ϵ [10, 231-1)

eax < 0xa
symbol ϵ [-231, 10)



How  it  works:  symbolic  execution  (5)
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eax = BitVec(32)   symbol ϵ [-231, 231-1]

eax >= 0xa
symbol ϵ [10, 231-1)

return

eax < 0xa
symbol ϵ [-231, 10)

symbol ϵ [0, 10)
jump with table

symbol ϵ [-231, 0)
error?!



There’s  too  many  of  them!
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 Symbolic executors fork a lot!

 Branches, loops, branches in loops
 Takes too long to get deep into the 

program, only finds shallow bugs
 Heuristics, like coverage-guided 

exploration, are band-aids
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Symbolic  execution  is  hard  to  scale
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 Partial symbolic execution

 Jump deep into a program using a 
concrete input prefix

 Trivially parallelizable

 Run independent symbolic 
executors with different prefixes
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Easy  way  to  scale  symbolic  execution



End  of  days
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Skeleton  of  a  bug-finding  system  (1)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

ssssss
ssssss

ssssss
ssssss

ssssss
ssssss
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 Started with simple fuzzing

 Added accountability

 Coverage-guided mutational fuzzing

 Sets groundwork for new tools

 Going from there

 Minset as the mediator
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Skeleton  of  a  bug-finding  system  (2)
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 Mediating with the minset

 Fuzzer cooperates with anything
 Symbolic executors need a bit 

more massaging

 The path to scalability

 Go for trivial parallelization
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The  servos  and  the  gears



Cyberdyne  kills  bugs...now  you  can  too!
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Let’s  chat

peter@trailofbits.com

Senior Security Engineer

Peter Goodman


