
Instructions implemented as C++ functions...

template <typename D, typename S>

DEF_SEM(MOV, D dst, const S src) {

Wri teZExt(dst, Read(src)) ;

return memory;

}

Program source code is compiled into...

i nt *RDX = . . . ;

for (long RDI = 0; . . . ; ++RDI) {

RDX[RDI] = 1;

}

Assembly, a textual representation of...

Machine code, which we want to analyze

c7 04 ba 01 00 00 00

struct State : publi c ArchState {

Ari thFlags aflag;

GPR gpr;

.

};

Operating on registers in a C++ structure...

And specialized by different instruction operand types

DEF_ISEL_MnW_In(MOV_MEMv_IMMz, MOV) ;

// extern "C" constexpr auto MOV_MEMv_IMMz_32 = MOV<M32W, I32>;

5

And calls the semantics within a "basic block" function with pre-defined "register" variables

Remill uses instruction decoder information to select a C++ semantics function...

(AMD64 100000fb1 7 (BYTES c7 04 ba 01 00 00 00) MOV_MEMv_IMMz_32

(WRITE_OP (DWORD_PTR (ADD (REG_64 RDX) (MUL (REG_64 RDI) (IMM_64 0x4)))))

(READ_OP (SIGNED_IMM_32 0x1))

Modellingmachine code semantics in C++
The life ofan instruction in Remill

We want to analyze machine code

• Is this program vulnerable to memory corruption, return-
oriented programming attacks, or other exploits?

• Are these two functions equivalent?

Remil l translates x86/amd64 and AArch64 (ARMv8) instructions into LLVM bitcode

Machine code is hard to analyze

• Thousands of instructions, many with complex side-effects
• Legacy (e.g. x87) and modern (e.g. AVX) features
• Memory is flat and opaque, no high-level types

Motivation: LLVM bitcode is easier to analyze, and many analyses for LLVM bitcode already exist
Challenge: Need LLVM bitcode semantics for all machine code instructions
Solution: Implement instruction semantics with C++ functions, compile them to LLVM bitcode with Clang

mov dword ptr [RDX + RDI * 4] , 0x1

Memory *__remi ll_basi c_block(State &state, addr_t pc, Memory *memory) {

auto &RDX = state. gpr. rdx. qword; // Pre-defi ned

auto &RDI = state. gpr. rdi . qword; // Pre-defi ned

memory = MOV_MEMv_IMMz_32(memory, state, RDX + RDI * 0x4, 0x1) ;

return memory;

}

6

Remill aggressively optimizes the result into LLVM bitcode equivalent to the following

Memory *__remi ll_basi c_block(State &state, addr_t pc, Memory *memory) {

return __remi ll_wri te_memory_32(

memory, state. gpr. rdx. qword + state. gpr. rdi . qword * 4, 1) ;

}

Peter Goodman
peter@trailofbits.com

github.com/trailofbits/remil l

