
PointsTo
Static Use-After-Free Detector for C/C++

Presented by: Peter Goodman

PointsTo detects use-after-free bugs

● Static, whole-program analyzer that finds
use-after-free bugs in C/C++ code

● Implemented in C++ as an LLVM plugin that
analyzes LLVM bitcode

● Scales to large programs
○ Starts producing reports on Mozilla Spidermonkey

after ~2 days

● Use-after-free bugs are subtle, don’t always
lead to crashes
○ Corruption: mutating new object that occupies the

same memory as free’d object
○ Unintended control-flow: invoking virtual method of an

unexpected class

● C++ exacerbates these problems
○ Type confusion: call virtual method of a freed object

recently reallocated
○ Hidden stuff: operator overloading

We use PointsTo, you should too

But.. But… Smart pointers?!

Not all C++ code is smart

● Consistent, correct, and comprehensive use of
smart pointers can eliminate UAFs
○ Most code doesn’t use smart pointers

● Often stuck with legacy codebases using plain
old pointers

Using PointsTo is easy

● Compile your code to bitcode with Clang
○ Use whole-program-llvm to make this easier!
○ ./env.sh make all

● Run PointsTo on your program’s bitcode
○ ./run.sh program.bc

● Inspect reports in your IDE
○ One report per warning (path from a free to a deref)
○ file:line function symbol

https://github.com/travitch/whole-program-llvm

● Inlines functions to get context-sensitivity
○ Generic, improves accuracy

● Then does a flow-insensitive (Anderson
style) points-to analysis
○ Conservative, easy to scale
○ Doesn’t have a notion of “after”

● Uses flow-insensitive analysis results to
improve accuracy of a flow-sensitive analysis
○ Precise, hard to scale

Three stages of PointsTo

Context-sensitive analysis

● Want to analyze each function with respect to
its caller
○ Eliminates some code paths, e.g. constant propagation
○ Elides some pointer operations, e.g. address of a local

● Key insight: inline a function into its caller
○ More aggressive inlining = more context sensitivity

Flow-insensitive points-to analysis

● Ignores control-flow

int x;
int y;
int *p = &x;
…
p = &y;

p

x

y

(1)

Flow-insensitive points-to analysis

● Assignments imply subset inclusion: q ⊇ p

int x;
int y;
int *p = &x;
int *q = p;
p = &y;

p x

y

(2)

q

Flow-insensitive points-to analysis

● Iterate until we reach a fixed point

int x;
int y;
int *p = &x;
int *q = p;
p = &y;

p x

y

(3)

q

Flow-insensitive points-to analysis

● Dereferences introduce new inclusions

int x;
int y;
int *p = &x;
int *q = &y;
int **r = &q;
*r = p;

(4)

x

yq

p

r

Flow-insensitive points-to analysis

● Dereferences introduce new inclusions

int x;
int y;
int *p = &x;
int *q = &y;
int **r = &q;
*r = p;

x

y

(5)

q

p

r

Flow-insensitive points-to analysis

● Functions are treated like variables

int *F() {
 ...
 return x;
}

int *y = F();

(6)

?

F

x

y

Flow-insensitive points-to analysis

● Arguments are similarly treated

int F(int *y){
 ...
}

int a;
int *x = &a;
F(x);

(7)

a

y

x

Flow-insensitive points-to analysis

● Each call to malloc/new is treated as an
object
○ Imagine every call to an allocator is a unique local

variable that is a pointer

● As many “objects” as there are calls to
allocators

(8)

● Flow-insensitive analyses scale but are
imprecise
○ Oblivious of frees/deletes
○ No paths = less helpful for diagnosing a bug

● Flow-insensitive analyses are conservative
○ Over-approximate points-to sets
○ Good for compilers where correctness is required
○ Useful for building call graphs with function pointers

Flow-insensitive points-to analysis (9)

Flow-sensitive points-to analysis

● Create a big (SSA-like) use-def graph
○ Uses: pointer dereference, free/delete
○ Defs: allocator calls, address-of, PHI, assignments

● Similar to tracking the set of reaching
definitions at every program point
○ A use (dereference) points-to the set of all defs

(allocations) that are reachable in the graph
○ Use a binary decision diagram to efficiently represent

points-to sets

(1)

Flow-sensitive points-to analysis (2)

● Example use-after-free

A *a = new A;
if (...) {
 delete a;
}
a->x = 10;

Flow-sensitive points-to analysis (3)

● Convert frees into new definitions

A *a = new A;
if (...) {
 delete a;
 a = ERROR;
}
a->x = 10;

Flow-sensitive points-to analysis (4)

● Convert to SSA

A *a
0
 = new A;

if (...) {
 a

1
 = ERROR;

}
a
2
 = φ(a

0
,a

1
)

a
2
->x = 10;

Flow-sensitive points-to analysis (5)

● Find a path from an error definition to a use

A *a
0
 = new A;

if (...) {
 a

1
 = ERROR;

}
a
2
 = φ(a

0
,a

1
)

a
2
->x = 10;

Flow-sensitive points-to analysis

● More precise than the flow-insensitive analysis
○ Tells us accurate points-to information at every

program point

● Hard to scale
○ Must propagate information through the def-use graph

■ Iterate until a fixed-point is reached
○ Graph is proportional to program size
○ Graph changes over time as we discover more

information about function pointer targets :-(

(6)

Can we stop the graph from changing while we analyze?

Combining analyses

● Problem: Need call graph for flow-sensitive
analysis
○ Function pointers complicate things

● Solution: Use points-to information from
flow-insensitive analysis to build call graph

● Result: Slightly less-precise analysis, but more
scalable
○ We’re prepared to accept false positives

Summary

● Different types of analyses have different
trade-offs
○ Flow insensitive: scalable but imprecise
○ Flow sensitive: hard to scale but precise

● Combining analyses is feasible and useful

● Finding a use-after-free necessarily requires
flow sensitivity: hint “after”

