
1540-7993/18/$33.00 © 2018 IEEE Copublished by the IEEE Computer and Reliability Societies March/April 2018 61

HACKING WITHOUT HUMANS

The Past, Present, and Future

of Cyberdyne

Peter Goodman and Artem Dinaburg | Trail of Bits

Cyberdyne—a distributed system that discovers vulnerabilities in third-party, off-the-shelf binary

programs—competed in all rounds of DARPA’s Cyber Grand Challenge. Since then, Cyberdyne has been

successfully applied during commercial code audits. We describe its evolution and implementation as

well as what it took to have it audit real applications.

T he Trail of Bits cyber reasoning system, Cyber-
dyne, is an automated and distributed bug-finding

system. It competed in all rounds of DARPA’s Cyber
Grand Challenge (CGC), first with the Trail of Bits
team, and then as the bug-finding arm of one of the
finalists. Since then, it has been successfully used to
audit shipping software libraries and for commercial
code audits.

Cyberdyne discovers and exploits memory access
violations and information disclosure bugs. Like most
CGC competitors, Cyberdyne applied two comple-
mentary techniques for finding these kinds of bugs. The
first technique, fuzzing, repeatedly executes a program
on inputs generated by mutating a common seed input.
The second and more complex technique, symbolic
execution, produces inputs that exercise all feasible pro-
gram paths.

This article is divided into two separate but equally
important halves. The first half of this article will
describe Cyberdyne’s unique features and approaches.
Cyberdyne evolved over the course of the competi-
tion into a production quality bug-finding engine.
Each component of Cyberdyne is a unique artifact,
whose designs were motivated by observations and
experimentation.

The second half of this article answers the big ques-
tion that everyone had after the CGC: What’s next? For
Cyberdyne, the next step was auditing Linux programs
for security vulnerabilities. Despite the deep differences
between the OS used for the CGC (DECREE) and
Linux (like the lack of files or threads), the vast major-
ity of Cyberdyne could be reused to automatically iden-
tify bugs in real Linux applications. We will discuss how
Cyberdyne performed the first paid automated security
audit, and the challenges of automated security audits.
We conclude this article with a discussion about the
future of automated bug-finding systems and how auto-
mated security assessments will improve software qual-
ity and security.

Building Cyberdyne
Architecture
Cyberdyne is a distributed system that tries to prove
that a target program has memory access violation bugs
or information disclosure bugs. Instead of attacking this
problem head-on, Cyberdyne implements a genetic
algorithm to produce inputs (genes) that maximize the
amount of code executed (fitness function) by the target
program. If these inputs crash the target program, Cyber-
dyne can show the program has memory safety bugs.

62 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

Nodes in a Cyberdyne cluster mostly operate in
isolation, with each node focusing on finding vulnera-
bilities in one or more target programs. When there are
more nodes than target programs, nodes cooperate to
share the workload. Cooperating nodes self-configure
to use different metrics for bug-finding progress in an
attempt to inspect the most target program states.

As shown in Figure 1, each node in a Cyberdyne
cluster is composed of four main services:

 ■ the fuzzer,
 ■ the symbolic executor,
 ■ the mixer, and
 ■ the minset.

These services share data and communicate with one
another over a shared Redis server. The first two services,
the fuzzer (GRR; https://github.com/trailofbits/grr)
and symbolic executor (PySymEmu running in symbolic
and concolic modes; https://github.com/trailofbits
/manticore) are bug-discovery tools. The fuzzer per-
forms input mutation; the symbolic executor synthesizes
new inputs. The mixer service performs input crossover,
and the minset service implements the fitness function.
Fitness is evaluated by how much unique code coverage
an input contributes to the set of coverage induced by all
generated inputs.

The following sections describe each Cyberdyne ser-
vice in turn.

Fuzzer
Fuzzing is a software assurance methodology that uses
input generation and concrete execution to discover
security faults. Fuzzing is widely accepted in the soft-
ware security industry and is used by large companies
such as Microsoft, Google, and Adobe. Any fault pro-
duced by a fuzzer represents a real fault in the program.
However, the absence of identified faults does not imply
the program is bug-free.

Fuzzers work by feeding randomized inputs into a
program and determining whether these inputs cause
the program to crash or to execute new code. Mod-
ern fuzzers instrument the target program and modify
inputs based on feedback from prior executions.

Cyberdyne’s fuzzer service has two components: the
scheduler and GRR. The scheduler orchestrates GRR
and decides what, when, and how to fuzz. GRR feeds
and mutates inputs to the program, and instruments the
program to determine when an input causes a crash.

Scheduler. By default, the scheduler devotes an equal
share of CPU resources to fuzzing each program.
When a vulnerability in a program is discovered, the
node responsible broadcasts this fact to others, thereby
reducing CPU resources dedicated to fuzzing that
program. This was a prudent choice for the competi-
tion, where the goal was to exploit as many programs
as possible.

The scheduler operates on the list of inputs supplied
by the minset service, which is described later. By focusing
on a limited set of inputs, the fuzzer makes efficient use of
limited CPU resources. A positive side-effect of using the
minset to select fuzzing inputs is that the fuzzer cooperates
with other input sources (for instance, the symbolic exec-
utor). Inputs in the minset could, and did, have a mixed
ancestry: an input may first be created via symbolic execu-
tion, then modified several times via fuzzing before crash-
ing the target. One way to visualize cooperation between
tools is as a kind of hill-climbing. The fuzzer mutates
inputs that are highest on the hill, hoping that the muta-
tion will yield new code coverage even higher up.

The inputs themselves are prioritized for fuzzing by
recency. Inputs most recently added to the minset are
allotted more CPU resources than those added long
ago. This fits with the hill-climbing theme; recent inputs
more likely exercise deeper program states (higher on
the hill), by virtue of being derived from inputs pro-
duced earlier (lower on the hill).

Separating scheduling from mutation allows us to
make the scheduler smart and the mutator extremely
fast. While the scheduler selects what to mutate, GRR
performs the mutation.

GRR. GRR is an emulator with built-in support for
mutating inputs and instrumenting program execution.
GRR was designed to maximize throughput: a single
GRR process can cycle between mutating an input and
performing an instrumented execution of that mutated
input. In the CGC, a single GRR process executing for
one hour would typically perform one million input–
execute cycles.

Dynamic binary translation. GRR is a 64-bit x86
program that emulates 32-bit x86 instructions using

Figure 1. The architectural diagram of a Cyberdyne node.

Concolic
PSEConcolic
PSE

PSE

MixerSymbolic executorFuzzer

Minset

Concolic
PSE

Scheduler

GRRGRRGRR

www.computer.org/security 63

dynamic binary translation (DBT). It dynamically
decodes a sequence of 32-bit x86 instructions (called
a basic block), modifies the decoded instructions (per-
haps adding in new ones), and encodes and later exe-
cutes the new instruction sequence. When executed,
the new instruction sequence performs the same oper-
ations as the original sequence, but with additional
instrumentation (for example, recording what code is
executed, intercepting memory accesses).

As a 64-bit program, GRR can use more hard-
ware registers and memory than the original program.
This setup simplified translation from 32-bit to 64-bit
machine code. The translated machine code could use
an additional eight registers guaranteed not to interfere
with any registers used by the original machine code.
Each of these eight “newly available” registers were given
specific meanings in the translated code. For example,
the translator rewrote all memory-accessing instructions
to use a special “MEMORY” base register that pointed at
the base of the emulated 32-bit address space.

Code caching. Existing DBTs (for instance, Intel PIN,
DynamoRIO) retranslate the same program every exe-
cution. They specialize in translating long-running pro-
grams, where the translation cost is amortized over time,
and “hot” code is reorganized to improve performance.
DBTs avoid retranslating
the same code by
storing translations
in an in-memory
cache, and index-
ing that cache with a
lookup table. Fuzzing
campaigns like the
CGC and code audits
require billions of program
executions. This means that all code in a target program,
even in short-running programs, is hot. This realiza-
tion motivated GRR’s code cache and index persistence
feature. Independent executions of GRR need not
retranslate the same code.

GRR’s cached translations can also be reused for dif-
ferent analysis purposes. For example, the same cached
translations can be used for recording code coverage and
memory access interception. This flexibility is achieved
using a combination of specific meanings for each addi-
tional 64-bit register and a “stub function” mechanism
for instrumentation callbacks.

A unique feature of GRR’s persisted cache index is
that it permits caching of self-modified or just-in-time
compiled code. Typical DBT cache indices map the vir-
tual addresses of original instructions to those of trans-
lated instruction. GRR’s index maps original, 32-bit
instruction addresses and a code “version number” to
the offset of the translated code within the persisted

cache file. The version number is a Merkle hash of the
contents of executable memory at the time that the
instruction was translated. Modifying the contents of an
executable page in memory invalidates its hash, thereby
triggering retranslation of any code on that page when
it’s next executed.

Snapshotting. GRR is actually two programs: the
first program takes “snapshots,” and the second pro-
gram emulates executions, using the snapshots as
a template for the program’s initial state. Snapshot-
ting was motivated by the observation that programs
typically execute deterministic setup code prior to
receiving input. Snapshotting execution prior to read-
ing external input allows GRR to skip setup code
and to ensure such code does not contribute to code
coverage.

OS and I/O. GRR emulates programs that inter-
act with DECREE, a custom, Linux-like operating
system developed by DARPA for the CGC. GRR is a
single-threaded program; however, it can emulate con-
current target programs communicating via sockets.
For example, GRR can emulate a server, a client pro-
gram, or both at the same time. GRR implements a sim-
ple round-robin process scheduler, swapping process
contexts between system calls.

GRR emulates all I/O
in memory and can
perform millions of
independent input
mutations and execu-
tion emulations dur-
ing a single run of the
GRR process. This
setup makes GRR

entirely CPU-bound.
How GRR fuzzes. A typical GRR fuzzing run begins

by executing a target program on an initial input file and
recording how the target program consumes the input.
The recording of all the input entering the program,
and how the input arrives, serves as the basis for GRR’s
input mutation.

GRR mutates input recordings via three different
granularities. The smallest granularity, system call,
applies a mutation operator to the input bytes of one
or more consecutive read system calls. For interactive
programs, this often represents byte-granularity muta-
tion. For structured or layered input formats, this can
enable mutation of the embedded data. The second
granularity, line granularity, compresses the system
call recording, combining uninterrupted sequences of
read system calls into logical “lines” of input. Other
I/O system calls represent interruption points. For
some interactive programs, this enables mutation of
actual user-supplied “answers” to input prompts. The

A unique feature of GRR’s persisted

cache index is that it permits caching of self-

modified or just-in-time compiled code.

64 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

last granularity, file granularity, behaves just like other
fuzzers: a mutation operator is applied to the initial
input as a whole.

The fundamental mutation operators (for example,
flipping a bit in each input byte) are implemented as
transformations within GRR. For more complex muta-
tions, GRR can embed external mutators. By default, GRR
uses Radamsa (an open source input mutation engine;
https://github.com/aoh/radamsa) when mutating
longer inputs.

GRR’s recording and replay can also be used to
explore program inputs generated by other sources.
One of the key input sources, described in the next sec-
tion, is the symbolic executor, which is a crucial source
of the raw input data used for mutation.

Symbolic Executor
PySymEmu (PSE) is a custom symbolic execution
engine written in Python and was originally developed
prior to Cyberdyne. We chose PSE because it was easy
to understand, extend, and integrate into Cyberdyne.
PSE is composed of three main parts: a symbolic CPU,
a memory model, and an operating system model.

PSE operates directly on x86 machine code and runs
by iteratively decoding and emulating x86 machine
instructions. Because PSE reads each instruction
from emulated memory, it can handle edge cases like
self-modifying code that can stymie other symbolic
executors. The PSE memory model is specifically suited
for analyzing binaries: PSE divides memory into pages,
which can contain a mix of concrete and symbolic bytes,
and can be addressed via both concrete and symbolic
memory addresses.

PSE’s operating system model supports symbolic
data as arguments to system calls. In such cases, PSE will
fork the analysis to explore all possible concrete states.
PSE also implements basic support for multiprocessing.

As with any symbolic execution tool, PSE has to choose
from many possible program states to analyze. PSE totally
orders all states according to a metric based on the num-
ber of input bytes read, output bytes written, and total and
unique instructions executed. The same metric is applied
to all programs. As a hedge against this metric being a poor
choice for a particular program, PSE will randomly choose
between the top and bottom five ranked states. Fundamen-
tally, this state-ordering metric provides no deep insights: it
was experimentally chosen by trial and error.

What made PSE effective in Cyberdyne was its abil-
ity to use GRR program snapshots to simulate concolic
operation as well as its approach to producing inputs.
In the former case, PSE could sidestep the typical state
explosion scalability issue by “jumping in” and begin-
ning full symbolic execution deep within some program
state. This also enabled cooperation between PSE and

other input producers (for instance, GRR). In the latter
case, PSE produced inputs at every symbolic fork. That
is, the vast majority of inputs produced by PSE were
produced before PSE observed the target program’s ter-
mination. Frequent and rapid input production enabled
deeper program exploration by the fuzzer.

KLEE. Early versions of Cyberdyne also integrated KLEE
(https://klee.github.io), another open source symbolic
executor. KLEE operates on LLVM IR (LLVM Inter-
mediate Representation), a program representation used
by the clang compiler. Typically, LLVM IR is produced
by compiling C/C�� source code with clang. In the
CGC, source code for target programs was not available.
We overcame this challenge by using McSema (https
://github.com/trailofbits/mcsema) to convert x86
binaries into LLVM IR.

Cyberdyne’s KLEE bug-finding service was even-
tually deprecated because KLEE was challenging to
understand and maintain and because its symbolic
emulation was a “leaky abstraction.” In the latter case,
KLEE provides no isolation between its runtime (for
example, memory and code used by its OS emulation
functions) and that of the program being symbolically
executed. This led to false positives (KLEE claiming
inputs crashed the program) and false negatives (KLEE
missing actual crashes).

Mixer
The mixer performs the crossover operation of a generic
algorithm: it takes existing inputs with high code cov-
erage and uses various heuristics to merge these inputs
into a new candidate input. In most systems, the
input-mixing stage occurs as a part of whole-file muta-
tion prior to fuzzing, but because GRR fuzzes programs
via DBT, Cyberdyne can provide more granular mixing.
For example, the mixer can take two program traces and
interleave an input system call from each trace to pro-
duce a new input. Or it can operate at the multiple-call
or whole-file level, splicing two inputs in various ways.

While it sounds simple, the mixer was surprisingly
effective. For example, imagine a program where you
enter your name and then solve a maze. If you solve
the maze, an overly long name triggers a bug at the
high score screen. Using the mixer, a series of inputs
that solves the maze would quickly propagate to other
high-coverage inputs, like one that sets an overly long
name. In effect, the “genes” of high-coverage inputs
would mix together to form child inputs that result in
higher code coverage than the parents’.

Minset
The minset service implements the fitness function of
Cyberdyne’s genetic algorithm. Fitness is measured

www.computer.org/security 65

using code coverage: if an input induces the execution
of previously unexecuted code, then that input is scored
as interesting and is eventually fed to the other services.
The goal of the minset service is to select a minimum set
of program inputs that maximize code coverage.

Coverage-guided bug-finding systems have become
commonplace in recent years. American Fuzzy Lop
(AFL; http://lcamtuf.coredump.cx/afl), libFuzzer
(http://llvm.org/docs/LibFuzzer.html), and Sanitizer-
Coverage are all production-quality coverage-guided
fuzzers. Some of these tools were employed by other
teams in the CGC. For example, the Shellphish team
used AFL directly, and the Codejitsu team used a modi-
fied version of AFL (https://github.com/mboehme
/aflfast) that employed a new algorithm for prioritizing
which inputs to fuzz.

Code coverage. There are many ways of measuring how
much of a program is executed given a specific input.
Cyberdyne uses an extended form of branch coverage
as its code coverage metric. Before executing a branch
instruction, Cyberdyne records a three-address tuple:

■ the most recently executed branch instruction
address,

■ the about-to-execute
branch instruction
address, and

■ the destination
instruction address
of the about-to-exe-
cute branch.

The most recently
executed branch instruc-
tion can be arbitrarily far back in time, adding more sen-
sitivity to this coverage metric.

Cyberdyne also counts indirect control flow instruc-
tions as branches (for instance, vtable-based method
calls, jump tables implementing switch statements, and
function returns). For example, function return instruc-
tions redirect control flow by jumping to an instruc-
tion address stored on the stack. Attackers can utilize
stack-based buffer overflows to corrupt the stored return
address and take control of a program’s execution. Treat-
ing return instructions as branches allows Cyberdyne to
detect return address changes as new coverage.

Lossy or lossless? What metrics count toward code
coverage are just as important as how those metrics are
recorded. A precise, or lossless, coverage recording adds
any input that induces the execution of a previously
unseen branch tuple into the minset. A lossy coverage
recording has the potential to treat some inputs as not
inducing new coverage even when it should.

In the CGC, we observed that importance of preci-
sion changed over time. The CGC was a competition,
and points were scored when bugs were found, even if
those bugs could not be converted into vulnerabilities.
This incentivized the discovery of low-hanging fruit,
that is, superficial bugs that manifest early in a program’s
execution, before the harder-to-find bugs are reached.
Our experiments showed that most superficial bugs
could be discovered within the first 30 minutes of fuzz-
ing a target program, but only if the metric, or recording
thereof, was extremely lossy. Hard-to-detect bugs, how-
ever, required precise coverage information recording.

We implemented adjustable precision control by
taking inspiration from probabilistic data structures like
Bloom filters. Cyberdyne recorded coverage by hashing
each branch tuple and using that hash as an index into
a file-backed bitmap. When a branch is executed, the
instrumentation sets the bit associated with the hashed
tuple. Low-precision recording was achieved by using a
small bitmap file, or a hash function with a poor distri-
bution, whereas high precision was achieved by using
larger bitmap files and better hash functions.

Why did precision matter? The reason is a mix of
resource allocation, scheduling, and brute-force effort.
Shallow bugs can usually be discovered by brute force,

that is, letting the fuzzer run
its course of mutators
given an input seed.
Cyberdyne’s fuzzer
scheduler gives pri-
ority to “new” inputs
and prioritized deter-
ministic mutators
(for example, flip the

first bit of every byte) above
nondeterministic ones (for instance, Radamsa). Start-
ing a campaign with low-precision coverage recording
helped keep the minset small, thereby bringing to bear
more CPU resources per input in the minset.

Deployment
We automated the provisioning and deployment of a
Cyberdyne system. A multinode Cyberdyne system
can be deployed on private or public clouds via a single
command line. We have successfully run Cyberdyne on
hardware ranging from a developer’s laptop to hundreds
of extra-large Amazon EC2 instances. This flexibility
allows us to use Cyberdyne for something as large as the
Cyber Grand Challenge or for something as small as a
single-application code audit.

Using Cyberdyne
First, we effectively used Cyberdyne during the CGC.
Cyberdyne identified the second-most amount of bugs

After the CGC, the question was “what’s

next?” For us, the answer was retargeting

the technology to audit the deployed

programs and libraries that silently power

the computing infrastructure.

66 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

in the CGC’s qualification challenge binaries. A faster,
more accurate, and more efficient version of Cyberdyne
was a key component of team Deep Red’s bug-finding
operations in the final event.

After the CGC, the question was “what’s next?” For
us, the answer was retargeting the technology to audit
the deployed programs and libraries that silently power
the computing infrastructure we take for granted.

We began an effort to use Cyberdyne to automati-
cally identify bugs in Linux applications. We knew that
Cyberdyne could find bugs in “real” software—the
challenge binaries are most certainly real.1 They exhibit
complex behavior and vulnerabilities unknown to the
authors. However, Cyberdyne was designed to find
bugs only in software written for DECREE, an operat-
ing system purpose-built for the CGC. While DECREE
is Linux based, it is very different from Linux.

Using Cyberdyne on Linux Applications
There are substantial design differences between
DECREE and Linux. DECREE was designed to
remove unnecessary complexity so competitors could
focus on the science of program analysis instead of
modeling quirks of operating system abstractions.
Although DECREE is based on the Linux kernel,
operating system features such as threads, sockets,
files, and signals are not accessible to DECREE appli-
cations. Linux programs expect all these features to
work, and more.

Rather than making the effort to port Cyberdyne
to Linux, we realized that we could audit real programs
quickly if we ported them to run in DECREE. The port-
ing process requires little to no modification of the
original program source. Most of the effort focused on
modifying how the programs were built and simulating
Linux functionality in DECREE.

Simulating Linux with DECREE. First, we created a
libc implementation using only DECREE function-
ality. The core of libc was built from parts of open
source libc implementations and from libc portions
implemented in the challenge binaries. Where neces-
sary, such as for file, thread, and process operations,
we mocked the functionality. Most mock system
calls either return a successful error code or error
not implemented, but a few, such as open and time,
required more complex modeling. File operations on
key files such as stdin, stderr, and stdout must
be accurately modeled to get input into the program.
Time retrieval operations shouldn’t make time go
backward and should report a time close to the pres-
ent day. Resource limits for rlimit should be realis-
tic, as should stat results for files that are known to
exist on a real Linux system.

Building programs to LLVM bitcode. DECREE pro-
grams are built using clang. Porting a Linux application
to DECREE is a four-step process. First, we obtain the
source code for the application and all of its depen-
dencies. Second, we compile all relevant source files
to LLVM bitcode modules. Third, we link all modules
together into a single, unified LLVM bitcode module.
Finally, we link this aggregate module to our custom libc
implementation. The result is a single file that represents
the program and all dependencies, down to the system
call layer.

Emitting DECREE executables. Combining all dependen-
cies in a single LLVM bitcode module enables substan-
tial optimization and analysis opportunities. A typical
program will use only a fraction of libc and dependent
library functionality. Normal libraries are a package
deal: there is no way to import only some functional-
ity. Because our new build system merges dependencies
at the LLVM bitcode layer, we can use LLVM’s optimi-
zation passes to eliminate unused functionality and to
flatten layers of indirection. Less code in the program
means less code to analyze. Because Cyberdyne oper-
ates on binaries, we can gain more analysis advantages
by emitting only instructions that are easy to reason
about, especially for our binary symbolic executor PSE.
For instance, we can avoid creating a binary with leg-
acy FPU instructions or complex vector instructions
like AVX.

Limitations. Our approach to porting applications to
DECREE has limitations. First, this approach requires
source code. While access to source code is not a
problem for most Linux applications or code-auditing
engagements, it removes certain classes of programs
from analysis. Second, some applications will never be
portable to DECREE: they may require graphical inter-
action, shared memory, or other features that can’t be
duplicated in DECREE. That shouldn’t stop us from
porting those components we’d most want to analyze—
encoders and decoders, compression libraries, image
processing libraries, parsers, and so on.

Next, let’s explore how we applied Cyberdyne to per-
form the first paid automated security audit in history.

The First Paid Automated Security Audit
In August 2016, Cyberdyne audited zlib (https://github
.com/madler/zlib) for the Mozilla Secure Open Source
(SOS) Fund. To our knowledge, this is the first instance
of a paid, automated security audit. Zlib is an open
source compression library that is used in virtually every
software package that requires compression or decom-
pression. This very article was created and printed with
multiple software packages that use zlib. Online readers

www.computer.org/security 67

are also using zlib—the PDF viewer or web browser
you are using relies on zlib for compression and decom-
pression functionality.

Zlib has a relatively small code base that hides a lot
of complexity. First, the code that runs on the machine
may not exactly match the source, due to compiler
optimizations. Some bugs may only occur occasionally
due to use of undefined behavior. Others may be trig-
gered only under extremely exceptional conditions. In a
well-inspected code base such as zlib, the only bugs left
might be too subtle for a human to find during a typical
engagement.

Mozilla is a nonprofit and houses a variety of proj-
ects beneficial to the public. Our automated audit of
zlib was thousands of dollars cheaper than an equivalent
human-powered audit and provided measureable code
coverage and generated inputs. The money saved can be
put to good use supporting other Mozilla projects, and
the generated artifacts can be easily reused for future
automated or manual audits.

For this automated assessment, we paired Cyber-
dyne with TrustInSoft’s verification software (https
://trust-in-soft.com) to identify memory corruption
vulnerabilities, create inputs that stress varying pro-
gram paths, and identify code that may lead to bugs in
the future.

Audit methodology. During the assessment, we focused
on typical zlib usage and code related to compression
and decompression functionality. Unrelated features
were not audited, unless they were called by core com-
pression or decompression routines.

Zlib is written in C and is designed to build for
an extremely wide variety of platforms and compil-
ers. Some code is built only for certain platforms (for
instance, only big endian or only little endian). For the
audit, we built zlib version 1.2.8 (the latest available at
the time) using the clang compiler targeting the 32-bit
Intel x86 instruction set.

Audit results. Cyberdyne is especially tuned for identify-
ing memory safety violations (for example, buffer over-
flows, use-after-free errors, stack overflows, and heap
overflows). Using Cyberdyne, we were unable to iden-
tify memory safety issues with the compress, uncom-
press, gzread, and gzwrite functions in zlib. We
concluded that the assessed code was highly unlikely
to harbor these types of bugs. The TrustInSoft analyzer
identified uses of undefined behavior; the full report
describes the details of these potential vulnerabilities.2

The full line and branch coverage results for the
core zlib source files are shown in Table 1 (reproduced
from the audit report). Cyberdyne automatically gen-
erated inputs to gather this coverage, given a program

to exercise the correct functionality and minimal seed
inputs to speed up the input synthesis process. Very
high coverage for the location of previous zlib vulner-
abilities, in the Huffman tree code (inftrees.c: 98.3
percent line coverage, 93.7 percent branch coverage,
trees.c: 93.6 percent line coverage, 89.4 percent branch
coverage), was a very welcome sign. The lone outlier
was the file infback.c, which had 0 percent coverage. Its
functionality was never invoked. Infback.c is an alterna-
tive to inflate.c and is only used when callback style I/O
is preferred.

This coverage is a result of invoking the
compression-related code both directly and via gzip
functionality. This compares very favorably to the
handcrafted unit tests that come with zlib, which gen-
erate 100 percent coverage for infback.c, inffast.c, and
inftrees.c; 98.6 percent coverage for inflate.c; and almost
zero coverage for anything else.

Cyberdyne’s automated audit revealed no new mem-
ory safety violations in zlib. Far from a disappointment,
the null result was expected. Zlib has been audited by
humans and battle-tested by virtue of being deployed
on almost every Internet-connected device. To date,

Table 1. Code coverage in zlib.

File Line coverage (%) Branch coverage (%)

adler32.c 67.20 61.80

compress.c 90.50 62.50

crc32.c 29.10 32.60

deflate.c 44.00 30.70

gzclose.c 80.00 75.00

gzlib.c 37.80 24.60

gzread.c 50.70 38.60

gzwrite.c 40.50 24.70

infback.c 0.00 0.00

inffast.c 83.80 75.70

inflate.c 75.30 65.90

inftrees.c 98.30 93.70

trees.c 93.60 89.40

uncompr.c 100.00 71.40

zutil.c 38.50 50.00

68 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

there have been no reported vulnerabilities in the tested
version of zlib.

The audit was a learning experience for us on the
benefits, challenges, and limitations of automated code
audits. While the actual auditing is fully automated, the
kind of library software Cyberdyne is best at analyzing
requires a level of upfront manual effort.

Challenges of Automated Security Audits
Cyberdyne automates the process of generating pro-
gram inputs, exercising new code paths, and identifying
bugs. What Cyberdyne does not automate is porting
Linux applications to DECREE or writing programs
to exercise library functionality. Porting and exercis-
ing functionality still require careful analysis of how the
software under test works and initial manual effort.

Building the target software. The biggest challenges
in porting software to DECREE are identifying all
build dependencies and modifying all the build and
configuration systems to emit code for 32-bit x86
processors, disabling poten-
tially problematic fea-
tures (for example,
handwritten vector-
ization, threading sup-
port, and so on), and
using a customized
version of clang that
emits whole-program
bitcode. Even for proj-
ects that build with GNU Autotools, simply changing
the compiler is rarely sufficient. Some software won’t
build with clang. Other software requires custom con-
figuration options or has a customized build step. Most
build configurations are just different enough from one
another that some human intervention in the initial
build process is still required.

Exercising program functionality. Exercising program
functionality is the second big challenge of automated
auditing. End-user applications have a single entry
point (that is, main) but process several command line
flags that affect the program. Shared libraries export a
range of functionality via different exported symbols.
How program or library functionality should be used is
not defined at a machine level, but via documentation
(which is sometimes lacking).

To illustrate, let’s use zlib as a motivating example.
The usual entry points into zlib are compress and
uncompress, but zlib also offers gzip wrappers around
the standard library file functions (for example, gzopen,
gzread, gzwrite and so on), checksumming function-
ality, and more. To test the whole library, a program or

multiple programs must be written to invoke these func-
tions. In Cyberdyne parlance, the small programs that
feed input to functionality under test are called drivers.
Developing drivers to exercise all program functionality
is a part of the initial manual test setup process required
to use Cyberdyne to audit Linux software.

Driver development ranges from the trivial to the com-
plex, depending on how many entry points the underlying
software has. Applications that accept file inputs typically
need a single trivial driver (for example, call the main func-
tion with stdin as the input file). Shared libraries require
many carefully written drivers that demand a thorough
understanding of the software under test.

Depending on the software under test, other factors
may also come into play during driver development:
How do you set bounds on inputs to software that
accepts unbounded input lengths? How do you best
mock system configuration files read by the software?
What are realistic values for mocked resource limits?

Even though it sounds like creating drivers is a daunt-
ing task, automation comes to the rescue once again.

Because the actual auditing
is fully automated,
driver development
can be iterative. An
initial driver just
needs to feed input
to some part of the
software. That driver
will then start the

initial audit. As the initial
audit runs, any newly developed drivers can be added to
Cyberdyne to increase the breadth of tested code.

The Future of Automated Code Audits
Despite the challenges, automated code audits are the
future of security testing. Human auditors are rare and
expensive and simply cannot keep up with the volume
of newly written code. Automation will democratize
access to security: low-cost, high-coverage testing will
finally be within reach of individual developers and
open source projects. The revolution in security test-
ing will dramatically improve the security posture of the
Internet’s core infrastructure.

The automated auditing revolution has already
begun. Projects like Google’s oss-fuzz project and Cov-
erity Scan already enable continuous fuzzing and static
analysis checking of open source applications. We envi-
sion a future where services like Cyberdyne integrate
with common continuous integration and code-hosting
environments to deliver quality, low-cost security
audits. Initially, automated audits will be a complement
to unit and integration tests—something that good soft-
ware developers use to ensure they ship quality code.

Automation will democratize access to

security: low-cost, high-coverage testing will

finally be within reach of individual

developers and open source projects.

www.computer.org/security 69

As automated audit technologies mature, objective
security metrics will slowly become meaningful and
change the economics of software security for the bet-
ter. Imagine if software came with verifiable guarantees
of “audited with Cyberdyne to 99.99 percent branch
coverage.” The label wouldn’t guarantee bug-free opera-
tion, because exploitable vulnerabilities may still exist
in edge cases, but it would be meaningful way to com-
pare software products. Once objective security mea-
sures influence software purchasing decisions, there
will finally be an economic reward for writing software
securely. The economic incentives will create a virtuous
cycle of better analysis tools, higher-quality software,
and a more secure world for all.

T here are no magic numbers that make Cyberdyne
find bugs. There are reasons why even just one

single-threaded GRR process can perform a million
mutate, execute, and code coverage measurement cycles
per hour. The decisions that we made were guided by
a performance-focused mindset, and backed up with
measurements. Our approach is general and broadly
applicable to other bug-finding systems. The approach
provides a framework for
tackling issues when
scaling vulnerability
discovery, for instance,
sidestepping state
explosion in symbolic
executors.

The tools and con-
cepts developed for
the Cyber Grand Challenge
can be used on practical soft-
ware. Cyberdyne demonstrated this by performing the
first paid automated security audit for the Mozilla SOS
fund. The automated audit of zlib delivered higher confi-
dence at a lower cost and faster timeframe than was pos-
sible with qualified human code auditors.

Automation represents a shift in the way that
software security audits can be performed. It’s a tre-
mendous step toward securing the Internet’s core
infrastructure. Automation can deliver continuous,
low-cost, and effective security analysis. Other projects
have already adopted this model: Google’s oss-fuzz
project enables continuous fuzzing of open source
applications. We envision a similar future for Cyber-
dyne: a service that works with popular code-hosting
and continuous integration environments and deliv-
ers quality, low-cost, continuous security audits. As
automated tools improve, we believe they can finally
upend the economics of software development to
reward safety instead of features by providing objective,

comparable security metrics across disparate software
packages.

References

1. “Your Tool Works Better Than Mine? Prove It,” Trail

of Bits blog, 1 Aug. 2016; https://blog.trailofbits

.com/2016/08/01/your-tool-works-better-than-mine

-prove-it.

 2. A. Dinaburg and P. Cuoq, Zlib: Automated Security
Assessment, Trail of Bits, 30 Sept. 2016; https://github

.com/trailofbits/public-reports/blob/master/Zlib

-AutomatedSecurityAssessment.pdf.

Peter Goodman is a senior security engineer at Trail of
Bits. He is an expert at designing and implementing
binary translation and instrumentation systems. He
holds an MS from the University of Toronto, where
his research focus was operating system kernel instru-
mentation. In a past life, he was a competitive ski
racer. Contact at peter@trailofbits.com.

Artem Dinaburg is a principal security engineer at Trail of
Bits. His current interests include automated program
analysis and creating program analysis tools usable

by software developers.
He holds a bach-
elor’s in computer
science from Penn
State and a master’s
in computer science
from Georgia Tech.
He has previously
spoken at academic

and industry computer
security conferences such

as ACM CCS, INFILTRATE, Blackhat, and ReCON.
Contact at artem@trailofbits.com.

As automated tools improve, we believe

they can finally upend the economics of

software development to reward safety

instead of features by providing objective,

comparable security metrics.

@s ecur i t ypr ivac y

FOLLOW US

