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HACKING WITHOUT HUMANS

The Past, Present, and Future 

of Cyberdyne

Peter Goodman and Artem Dinaburg | Trail of Bits

Cyberdyne—a distributed system that discovers vulnerabilities in third-party, off-the-shelf binary 

programs—competed in all rounds of DARPA’s Cyber Grand Challenge. Since then, Cyberdyne has been 

successfully applied during commercial code audits. We describe its evolution and implementation as 

well as what it took to have it audit real applications.

T he Trail of Bits cyber reasoning system, Cyber-
dyne, is an automated and distributed bug-finding 

system. It competed in all rounds of DARPA’s Cyber 
Grand Challenge (CGC), first with the Trail of Bits 
team, and then as the bug-finding arm of one of the 
finalists. Since then, it has been successfully used to 
audit shipping software libraries and for commercial 
code audits.

Cyberdyne discovers and exploits memory access 
violations and information disclosure bugs. Like most 
CGC competitors, Cyberdyne applied two comple-
mentary techniques for finding these kinds of bugs. The 
first technique, fuzzing, repeatedly executes a program 
on inputs generated by mutating a common seed input. 
The second and more complex technique, symbolic 
execution, produces inputs that exercise all feasible pro-
gram paths.

This article is divided into two separate but equally 
important halves. The first half of this article will 
describe Cyberdyne’s unique features and approaches. 
Cyberdyne evolved over the course of the competi-
tion into a production quality bug-finding engine. 
Each component of Cyberdyne is a unique artifact, 
whose designs were motivated by observations and 
experimentation.

The second half of this article answers the big ques-
tion that everyone had after the CGC: What’s next? For 
Cyberdyne, the next step was auditing Linux programs 
for security vulnerabilities. Despite the deep differences 
between the OS used for the CGC (DECREE) and 
Linux (like the lack of files or threads), the vast major-
ity of Cyberdyne could be reused to automatically iden-
tify bugs in real Linux applications. We will discuss how 
Cyberdyne performed the first paid automated security 
audit, and the challenges of automated security audits. 
We conclude this article with a discussion about the 
future of automated bug-finding systems and how auto-
mated security assessments will improve software qual-
ity and security.

Building Cyberdyne
Architecture
Cyberdyne is a distributed system that tries to prove 
that a target program has memory access violation bugs 
or information disclosure bugs. Instead of attacking this 
problem head-on, Cyberdyne implements a genetic 
algorithm to produce inputs (genes) that maximize the 
amount of code executed (fitness function) by the target 
program. If these inputs crash the target program, Cyber-
dyne can show the program has memory safety bugs.
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Nodes in a Cyberdyne cluster mostly operate in  
isolation, with each node focusing on finding vulnera-
bilities in one or more target programs. When there are 
more nodes than target programs, nodes cooperate to 
share the workload. Cooperating nodes self-configure 
to use different metrics for bug-finding progress in an 
attempt to inspect the most target program states.

As shown in Figure 1, each node in a Cyberdyne 
cluster is composed of four main services:

 ■ the fuzzer,
 ■ the symbolic executor,
 ■ the mixer, and
 ■ the minset.

These services share data and communicate with one 
another over a shared Redis server. The first two services, 
the fuzzer (GRR; https://github.com/trailofbits/grr) 
and symbolic executor (PySymEmu running in symbolic 
and concolic modes; https://github.com/trailofbits 
/manticore) are bug-discovery tools. The fuzzer per-
forms input mutation; the symbolic executor synthesizes 
new inputs. The mixer service performs input crossover, 
and the minset service implements the fitness function. 
Fitness is evaluated by how much unique code coverage 
an input contributes to the set of coverage induced by all 
generated inputs.

The following sections describe each Cyberdyne ser-
vice in turn.

Fuzzer
Fuzzing is a software assurance methodology that uses 
input generation and concrete execution to discover 
security faults. Fuzzing is widely accepted in the soft-
ware security industry and is used by large companies 
such as Microsoft, Google, and Adobe. Any fault pro-
duced by a fuzzer represents a real fault in the program. 
However, the absence of identified faults does not imply 
the program is bug-free.

Fuzzers work by feeding randomized inputs into a 
program and determining whether these inputs cause 
the program to crash or to execute new code. Mod-
ern fuzzers instrument the target program and modify 
inputs based on feedback from prior executions.

Cyberdyne’s fuzzer service has two components: the 
scheduler and GRR. The scheduler orchestrates GRR 
and decides what, when, and how to fuzz. GRR feeds 
and mutates inputs to the program, and instruments the 
program to determine when an input causes a crash.

Scheduler. By default, the scheduler devotes an equal 
share of CPU resources to fuzzing each program. 
When a vulnerability in a program is discovered, the 
node responsible broadcasts this fact to others, thereby 
reducing CPU resources dedicated to fuzzing that  
program. This was a prudent choice for the competi-
tion, where the goal was to exploit as many programs 
as possible.

The scheduler operates on the list of inputs supplied 
by the minset service, which is described later. By focusing 
on a limited set of inputs, the fuzzer makes efficient use of 
limited CPU resources. A positive side-effect of using the 
minset to select fuzzing inputs is that the fuzzer cooperates 
with other input sources (for instance, the symbolic exec-
utor). Inputs in the minset could, and did, have a mixed 
ancestry: an input may first be created via symbolic execu-
tion, then modified several times via fuzzing before crash-
ing the target. One way to visualize cooperation between 
tools is as a kind of hill-climbing. The fuzzer mutates 
inputs that are highest on the hill, hoping that the muta-
tion will yield new code coverage even higher up.

The inputs themselves are prioritized for fuzzing by 
recency. Inputs most recently added to the minset are 
allotted more CPU resources than those added long 
ago. This fits with the hill-climbing theme; recent inputs 
more likely exercise deeper program states (higher on 
the hill), by virtue of being derived from inputs pro-
duced earlier (lower on the hill).

Separating scheduling from mutation allows us to 
make the scheduler smart and the mutator extremely 
fast. While the scheduler selects what to mutate, GRR 
performs the mutation.

GRR. GRR is an emulator with built-in support for 
mutating inputs and instrumenting program execution. 
GRR was designed to maximize throughput: a single 
GRR process can cycle between mutating an input and 
performing an instrumented execution of that mutated 
input. In the CGC, a single GRR process executing for 
one hour would typically perform one million input–
execute cycles.

Dynamic binary translation. GRR is a 64-bit x86 
program that emulates 32-bit x86 instructions using 

Figure 1. The architectural diagram of a Cyberdyne node.
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dynamic binary translation (DBT). It dynamically 
decodes a sequence of 32-bit x86 instructions (called 
a basic block), modifies the decoded instructions (per-
haps adding in new ones), and encodes and later exe-
cutes the new instruction sequence. When executed, 
the new instruction sequence performs the same oper-
ations as the original sequence, but with additional 
instrumentation (for example, recording what code is 
executed, intercepting memory accesses).

As a 64-bit program, GRR can use more hard-
ware registers and memory than the original program. 
This setup simplified translation from 32-bit to 64-bit 
machine code. The translated machine code could use 
an additional eight registers guaranteed not to interfere 
with any registers used by the original machine code. 
Each of these eight “newly available” registers were given 
specific meanings in the translated code. For example, 
the translator rewrote all memory-accessing instructions 
to use a special “MEMORY” base register that pointed at 
the base of the emulated 32-bit address space.

Code caching. Existing DBTs (for instance, Intel PIN, 
DynamoRIO) retranslate the same program every exe-
cution. They specialize in translating long-running pro-
grams, where the translation cost is amortized over time, 
and “hot” code is reorganized to improve performance. 
DBTs avoid retranslating 
the same code by 
storing translations 
in an in-memory 
cache, and index-
ing that cache with a 
lookup table. Fuzzing 
campaigns like the 
CGC and code audits 
require billions of program 
executions. This means that all code in a target program, 
even in short-running programs, is hot. This realiza-
tion motivated GRR’s code cache and index persistence 
feature. Independent executions of GRR need not 
retranslate the same code.

GRR’s cached translations can also be reused for dif-
ferent analysis purposes. For example, the same cached 
translations can be used for recording code coverage and 
memory access interception. This flexibility is achieved 
using a combination of specific meanings for each addi-
tional 64-bit register and a “stub function” mechanism 
for instrumentation callbacks.

A unique feature of GRR’s persisted cache index is 
that it permits caching of self-modified or just-in-time 
compiled code. Typical DBT cache indices map the vir-
tual addresses of original instructions to those of trans-
lated instruction. GRR’s index maps original, 32-bit 
instruction addresses and a code “version number” to 
the offset of the translated code within the persisted 

cache file. The version number is a Merkle hash of the 
contents of executable memory at the time that the 
instruction was translated. Modifying the contents of an 
executable page in memory invalidates its hash, thereby 
triggering retranslation of any code on that page when 
it’s next executed.

Snapshotting. GRR is actually two programs: the 
first program takes “snapshots,” and the second pro-
gram emulates executions, using the snapshots as 
a template for the program’s initial state. Snapshot-
ting was motivated by the observation that programs 
typically execute deterministic setup code prior to 
receiving input. Snapshotting execution prior to read-
ing external input allows GRR to skip setup code 
and to ensure such code does not contribute to code 
coverage.

OS and I/O. GRR emulates programs that inter-
act with DECREE, a custom, Linux-like operating 
system developed by DARPA for the CGC. GRR is a 
single-threaded program; however, it can emulate con-
current target programs communicating via sockets. 
For example, GRR can emulate a server, a client pro-
gram, or both at the same time. GRR implements a sim-
ple round-robin process scheduler, swapping process 
contexts between system calls.

GRR emulates all I/O 
in memory and can 
perform millions of 
independent input 
mutations and execu-
tion emulations dur-
ing a single run of the 
GRR process. This 
setup makes GRR 

entirely CPU-bound.
How GRR fuzzes. A typical GRR fuzzing run begins 

by executing a target program on an initial input file and 
recording how the target program consumes the input. 
The recording of all the input entering the program, 
and how the input arrives, serves as the basis for GRR’s 
input mutation.

GRR mutates input recordings via three different 
granularities. The smallest granularity, system call, 
applies a mutation operator to the input bytes of one 
or more consecutive read system calls. For interactive 
programs, this often represents byte-granularity muta-
tion. For structured or layered input formats, this can 
enable mutation of the embedded data. The second 
granularity, line granularity, compresses the system 
call recording, combining uninterrupted sequences of 
read system calls into logical “lines” of input. Other 
I/O system calls represent interruption points. For 
some interactive programs, this enables mutation of 
actual user-supplied “answers” to input prompts. The 

A unique feature of GRR’s persisted  

cache index is that it permits caching of self-

modified or just-in-time compiled code.
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last granularity, file granularity, behaves just like other  
fuzzers: a mutation operator is applied to the initial 
input as a whole.

The fundamental mutation operators (for example, 
flipping a bit in each input byte) are implemented as  
transformations within GRR. For more complex muta-
tions, GRR can embed external mutators. By default, GRR 
uses Radamsa (an open source input mutation engine; 
https://github.com/aoh/radamsa) when mutating  
longer inputs.

GRR’s recording and replay can also be used to 
explore program inputs generated by other sources. 
One of the key input sources, described in the next sec-
tion, is the symbolic executor, which is a crucial source 
of the raw input data used for mutation.

Symbolic Executor
PySymEmu (PSE) is a custom symbolic execution 
engine written in Python and was originally developed 
prior to Cyberdyne. We chose PSE because it was easy 
to understand, extend, and integrate into Cyberdyne. 
PSE is composed of three main parts: a symbolic CPU, 
a memory model, and an operating system model.

PSE operates directly on x86 machine code and runs 
by iteratively decoding and emulating x86 machine 
instructions. Because PSE reads each instruction 
from emulated memory, it can handle edge cases like 
self-modifying code that can stymie other symbolic 
executors. The PSE memory model is specifically suited 
for analyzing binaries: PSE divides memory into pages, 
which can contain a mix of concrete and symbolic bytes, 
and can be addressed via both concrete and symbolic 
memory addresses.

PSE’s operating system model supports symbolic 
data as arguments to system calls. In such cases, PSE will 
fork the analysis to explore all possible concrete states. 
PSE also implements basic support for multiprocessing.

As with any symbolic execution tool, PSE has to choose 
from many possible program states to analyze. PSE totally 
orders all states according to a metric based on the num-
ber of input bytes read, output bytes written, and total and 
unique instructions executed. The same metric is applied 
to all programs. As a hedge against this metric being a poor 
choice for a particular program, PSE will randomly choose 
between the top and bottom five ranked states. Fundamen-
tally, this state-ordering metric provides no deep insights: it 
was experimentally chosen by trial and error.

What made PSE effective in Cyberdyne was its abil-
ity to use GRR program snapshots to simulate concolic 
operation as well as its approach to producing inputs. 
In the former case, PSE could sidestep the typical state 
explosion scalability issue by “jumping in” and begin-
ning full symbolic execution deep within some program 
state. This also enabled cooperation between PSE and 

other input producers (for instance, GRR). In the latter 
case, PSE produced inputs at every symbolic fork. That 
is, the vast majority of inputs produced by PSE were 
produced before PSE observed the target program’s ter-
mination. Frequent and rapid input production enabled 
deeper program exploration by the fuzzer.

KLEE. Early versions of Cyberdyne also integrated KLEE 
(https://klee.github.io), another open source symbolic 
executor. KLEE operates on LLVM IR (LLVM Inter-
mediate Representation), a program representation used 
by the clang compiler. Typically, LLVM IR is produced 
by compiling C/C�� source code with clang. In the 
CGC, source code for target programs was not available. 
We overcame this challenge by using McSema (https 
://github.com/trailofbits/mcsema) to convert x86 
binaries into LLVM IR.

Cyberdyne’s KLEE bug-finding service was even-
tually deprecated because KLEE was challenging to 
understand and maintain and because its symbolic 
emulation was a “leaky abstraction.” In the latter case, 
KLEE provides no isolation between its runtime (for 
example, memory and code used by its OS emulation 
functions) and that of the program being symbolically 
executed. This led to false positives (KLEE claiming 
inputs crashed the program) and false negatives (KLEE 
missing actual crashes).

Mixer
The mixer performs the crossover operation of a generic 
algorithm: it takes existing inputs with high code cov-
erage and uses various heuristics to merge these inputs 
into a new candidate input. In most systems, the 
input-mixing stage occurs as a part of whole-file muta-
tion prior to fuzzing, but because GRR fuzzes programs 
via DBT, Cyberdyne can provide more granular mixing. 
For example, the mixer can take two program traces and 
interleave an input system call from each trace to pro-
duce a new input. Or it can operate at the multiple-call 
or whole-file level, splicing two inputs in various ways.

While it sounds simple, the mixer was surprisingly 
effective. For example, imagine a program where you 
enter your name and then solve a maze. If you solve 
the maze, an overly long name triggers a bug at the 
high score screen. Using the mixer, a series of inputs 
that solves the maze would quickly propagate to other 
high-coverage inputs, like one that sets an overly long 
name. In effect, the “genes” of high-coverage inputs 
would mix together to form child inputs that result in 
higher code coverage than the parents’.

Minset
The minset service implements the fitness function of 
Cyberdyne’s genetic algorithm. Fitness is measured 
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using code coverage: if an input induces the execution 
of previously unexecuted code, then that input is scored 
as interesting and is eventually fed to the other services. 
The goal of the minset service is to select a minimum set 
of program inputs that maximize code coverage.

Coverage-guided bug-finding systems have become 
commonplace in recent years. American Fuzzy Lop 
(AFL; http://lcamtuf.coredump.cx/afl), libFuzzer 
(http://llvm.org/docs/LibFuzzer.html), and Sanitizer-
Coverage are all production-quality coverage-guided 
fuzzers. Some of these tools were employed by other 
teams in the CGC. For example, the Shellphish team 
used AFL directly, and the Codejitsu team used a modi-
fied version of AFL (https://github.com/mboehme
/aflfast) that employed a new algorithm for prioritizing 
which inputs to fuzz.

Code coverage. There are many ways of measuring how 
much of a program is executed given a specific input. 
Cyberdyne uses an extended form of branch coverage 
as its code coverage metric. Before executing a branch 
instruction, Cyberdyne records a three-address tuple:

■ the most recently executed branch instruction 
address,

■ the about-to-execute 
branch instruction 
address, and

■ the destination 
instruction address 
of the about-to-exe-
cute branch.

The most recently 
executed branch instruc-
tion can be arbitrarily far back in time, adding more sen-
sitivity to this coverage metric.

Cyberdyne also counts indirect control flow instruc-
tions as branches (for instance, vtable-based method 
calls, jump tables implementing switch statements, and 
function returns). For example, function return instruc-
tions redirect control flow by jumping to an instruc-
tion address stored on the stack. Attackers can utilize 
stack-based buffer overflows to corrupt the stored return 
address and take control of a program’s execution. Treat-
ing return instructions as branches allows Cyberdyne to 
detect return address changes as new coverage.

Lossy or lossless? What metrics count toward code 
coverage are just as important as how those metrics are 
recorded. A precise, or lossless, coverage recording adds 
any input that induces the execution of a previously 
unseen branch tuple into the minset. A lossy coverage 
recording has the potential to treat some inputs as not 
inducing new coverage even when it should.

In the CGC, we observed that importance of preci-
sion changed over time. The CGC was a competition, 
and points were scored when bugs were found, even if 
those bugs could not be converted into vulnerabilities. 
This incentivized the discovery of low-hanging fruit, 
that is, superficial bugs that manifest early in a program’s 
execution, before the harder-to-find bugs are reached. 
Our experiments showed that most superficial bugs 
could be discovered within the first 30 minutes of fuzz-
ing a target program, but only if the metric, or recording 
thereof, was extremely lossy. Hard-to-detect bugs, how-
ever, required precise coverage information recording.

We implemented adjustable precision control by 
taking inspiration from probabilistic data structures like 
Bloom filters. Cyberdyne recorded coverage by hashing 
each branch tuple and using that hash as an index into 
a file-backed bitmap. When a branch is executed, the 
instrumentation sets the bit associated with the hashed 
tuple. Low-precision recording was achieved by using a 
small bitmap file, or a hash function with a poor distri-
bution, whereas high precision was achieved by using 
larger bitmap files and better hash functions.

Why did precision matter? The reason is a mix of 
resource allocation, scheduling, and brute-force effort. 
Shallow bugs can usually be discovered by brute force, 

that is, letting the fuzzer run 
its course of mutators 
given an input seed. 
Cyberdyne’s fuzzer 
scheduler gives pri-
ority to “new” inputs 
and prioritized deter-
ministic mutators 
(for example, flip the 

first bit of every byte) above 
nondeterministic ones (for instance, Radamsa). Start-
ing a campaign with low-precision coverage recording 
helped keep the minset small, thereby bringing to bear 
more CPU resources per input in the minset.

Deployment
We automated the provisioning and deployment of a 
Cyberdyne system. A multinode Cyberdyne system 
can be deployed on private or public clouds via a single 
command line. We have successfully run Cyberdyne on 
hardware ranging from a developer’s laptop to hundreds 
of extra-large Amazon EC2 instances. This flexibility 
allows us to use Cyberdyne for something as large as the 
Cyber Grand Challenge or for something as small as a 
single-application code audit.

Using Cyberdyne
First, we effectively used Cyberdyne during the CGC. 
Cyberdyne identified the second-most amount of bugs 

After the CGC, the question was “what’s 

next?” For us, the answer was retargeting 

the technology to audit the deployed  

programs and libraries that silently power 

the computing infrastructure.
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in the CGC’s qualification challenge binaries. A faster, 
more accurate, and more efficient version of Cyberdyne 
was a key component of team Deep Red’s bug-finding 
operations in the final event.

After the CGC, the question was “what’s next?” For 
us, the answer was retargeting the technology to audit 
the deployed programs and libraries that silently power 
the computing infrastructure we take for granted.

We began an effort to use Cyberdyne to automati-
cally identify bugs in Linux applications. We knew that 
Cyberdyne could find bugs in “real” software—the 
challenge binaries are most certainly real.1 They exhibit 
complex behavior and vulnerabilities unknown to the 
authors. However, Cyberdyne was designed to find 
bugs only in software written for DECREE, an operat-
ing system purpose-built for the CGC. While DECREE 
is Linux based, it is very different from Linux.

Using Cyberdyne on Linux Applications
There are substantial design differences between 
DECREE and Linux. DECREE was designed to 
remove unnecessary complexity so competitors could 
focus on the science of program analysis instead of 
modeling quirks of operating system abstractions. 
Although DECREE is based on the Linux kernel, 
operating system features such as threads, sockets, 
files, and signals are not accessible to DECREE appli-
cations. Linux programs expect all these features to 
work, and more.

Rather than making the effort to port Cyberdyne 
to Linux, we realized that we could audit real programs 
quickly if we ported them to run in DECREE. The port-
ing process requires little to no modification of the 
original program source. Most of the effort focused on 
modifying how the programs were built and simulating 
Linux functionality in DECREE.

Simulating Linux with DECREE. First, we created a 
libc implementation using only DECREE function-
ality. The core of libc was built from parts of open 
source libc implementations and from libc portions 
implemented in the challenge binaries. Where neces-
sary, such as for file, thread, and process operations, 
we mocked the functionality. Most mock system 
calls either return a successful error code or error 
not implemented, but a few, such as open and time, 
required more complex modeling. File operations on 
key files such as stdin, stderr, and stdout must 
be accurately modeled to get input into the program. 
Time retrieval operations shouldn’t make time go 
backward and should report a time close to the pres-
ent day. Resource limits for rlimit should be realis-
tic, as should stat results for files that are known to 
exist on a real Linux system.

Building programs to LLVM bitcode. DECREE pro-
grams are built using clang. Porting a Linux application 
to DECREE is a four-step process. First, we obtain the 
source code for the application and all of its depen-
dencies. Second, we compile all relevant source files 
to LLVM bitcode modules. Third, we link all modules 
together into a single, unified LLVM bitcode module. 
Finally, we link this aggregate module to our custom libc 
implementation. The result is a single file that represents 
the program and all dependencies, down to the system 
call layer.

Emitting DECREE executables. Combining all dependen-
cies in a single LLVM bitcode module enables substan-
tial optimization and analysis opportunities. A typical 
program will use only a fraction of libc and dependent 
library functionality. Normal libraries are a package 
deal: there is no way to import only some functional-
ity. Because our new build system merges dependencies 
at the LLVM bitcode layer, we can use LLVM’s optimi-
zation passes to eliminate unused functionality and to 
flatten layers of indirection. Less code in the program 
means less code to analyze. Because Cyberdyne oper-
ates on binaries, we can gain more analysis advantages 
by emitting only instructions that are easy to reason 
about, especially for our binary symbolic executor PSE. 
For instance, we can avoid creating a binary with leg-
acy FPU instructions or complex vector instructions  
like AVX.

Limitations. Our approach to porting applications to 
DECREE has limitations. First, this approach requires 
source code. While access to source code is not a 
problem for most Linux applications or code-auditing 
engagements, it removes certain classes of programs 
from analysis. Second, some applications will never be 
portable to DECREE: they may require graphical inter-
action, shared memory, or other features that can’t be 
duplicated in DECREE. That shouldn’t stop us from 
porting those components we’d most want to analyze—
encoders and decoders, compression libraries, image 
processing libraries, parsers, and so on.

Next, let’s explore how we applied Cyberdyne to per-
form the first paid automated security audit in history.

The First Paid Automated Security Audit
In August 2016, Cyberdyne audited zlib (https://github 
.com/madler/zlib) for the Mozilla Secure Open Source 
(SOS) Fund. To our knowledge, this is the first instance 
of a paid, automated security audit. Zlib is an open 
source compression library that is used in virtually every 
software package that requires compression or decom-
pression. This very article was created and printed with 
multiple software packages that use zlib. Online readers 
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are also using zlib—the PDF viewer or web browser 
you are using relies on zlib for compression and decom-
pression functionality.

Zlib has a relatively small code base that hides a lot 
of complexity. First, the code that runs on the machine 
may not exactly match the source, due to compiler 
optimizations. Some bugs may only occur occasionally 
due to use of undefined behavior. Others may be trig-
gered only under extremely exceptional conditions. In a 
well-inspected code base such as zlib, the only bugs left 
might be too subtle for a human to find during a typical 
engagement.

Mozilla is a nonprofit and houses a variety of proj-
ects beneficial to the public. Our automated audit of 
zlib was thousands of dollars cheaper than an equivalent 
human-powered audit and provided measureable code 
coverage and generated inputs. The money saved can be 
put to good use supporting other Mozilla projects, and 
the generated artifacts can be easily reused for future 
automated or manual audits.

For this automated assessment, we paired Cyber-
dyne with TrustInSoft’s verification software (https 
://trust-in-soft.com) to identify memory corruption 
vulnerabilities, create inputs that stress varying pro-
gram paths, and identify code that may lead to bugs in 
the future.

Audit methodology. During the assessment, we focused 
on typical zlib usage and code related to compression 
and decompression functionality. Unrelated features 
were not audited, unless they were called by core com-
pression or decompression routines.

Zlib is written in C and is designed to build for 
an extremely wide variety of platforms and compil-
ers. Some code is built only for certain platforms (for 
instance, only big endian or only little endian). For the 
audit, we built zlib version 1.2.8 (the latest available at 
the time) using the clang compiler targeting the 32-bit 
Intel x86 instruction set.

Audit results. Cyberdyne is especially tuned for identify-
ing memory safety violations (for example, buffer over-
flows, use-after-free errors, stack overflows, and heap 
overflows). Using Cyberdyne, we were unable to iden-
tify memory safety issues with the compress, uncom-
press, gzread, and gzwrite functions in zlib. We 
concluded that the assessed code was highly unlikely 
to harbor these types of bugs. The TrustInSoft analyzer 
identified uses of undefined behavior; the full report 
describes the details of these potential vulnerabilities.2

The full line and branch coverage results for the 
core zlib source files are shown in Table 1 (reproduced 
from the audit report). Cyberdyne automatically gen-
erated inputs to gather this coverage, given a program 

to exercise the correct functionality and minimal seed 
inputs to speed up the input synthesis process. Very 
high coverage for the location of previous zlib vulner-
abilities, in the Huffman tree code (inftrees.c: 98.3 
percent line coverage, 93.7 percent branch coverage, 
trees.c: 93.6 percent line coverage, 89.4 percent branch 
coverage), was a very welcome sign. The lone outlier 
was the file infback.c, which had 0 percent coverage. Its 
functionality was never invoked. Infback.c is an alterna-
tive to inflate.c and is only used when callback style I/O 
is preferred.

This coverage is a result of invoking the 
compression-related code both directly and via gzip 
functionality. This compares very favorably to the 
handcrafted unit tests that come with zlib, which gen-
erate 100 percent coverage for infback.c, inffast.c, and 
inftrees.c; 98.6 percent coverage for inflate.c; and almost 
zero coverage for anything else.

Cyberdyne’s automated audit revealed no new mem-
ory safety violations in zlib. Far from a disappointment, 
the null result was expected. Zlib has been audited by 
humans and battle-tested by virtue of being deployed 
on almost every Internet-connected device. To date, 

Table 1. Code coverage in zlib.

File Line coverage (%) Branch coverage (%)

adler32.c 67.20 61.80

compress.c 90.50 62.50

crc32.c 29.10 32.60

deflate.c 44.00 30.70

gzclose.c 80.00 75.00

gzlib.c 37.80 24.60

gzread.c 50.70 38.60

gzwrite.c 40.50 24.70

infback.c 0.00 0.00

inffast.c 83.80 75.70

inflate.c 75.30 65.90

inftrees.c 98.30 93.70

trees.c 93.60 89.40

uncompr.c 100.00 71.40

zutil.c 38.50 50.00
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there have been no reported vulnerabilities in the tested 
version of zlib.

The audit was a learning experience for us on the 
benefits, challenges, and limitations of automated code 
audits. While the actual auditing is fully automated, the 
kind of library software Cyberdyne is best at analyzing 
requires a level of upfront manual effort.

Challenges of Automated Security Audits
Cyberdyne automates the process of generating pro-
gram inputs, exercising new code paths, and identifying 
bugs. What Cyberdyne does not automate is porting 
Linux applications to DECREE or writing programs 
to exercise library functionality. Porting and exercis-
ing functionality still require careful analysis of how the 
software under test works and initial manual effort.

Building the target software. The biggest challenges 
in porting software to DECREE are identifying all 
build dependencies and modifying all the build and 
configuration systems to emit code for 32-bit x86 
processors, disabling poten-
tially problematic fea-
tures (for example, 
handwritten vector-
ization, threading sup-
port, and so on), and 
using a customized 
version of clang that 
emits whole-program 
bitcode. Even for proj-
ects that build with GNU Autotools, simply changing 
the compiler is rarely sufficient. Some software won’t 
build with clang. Other software requires custom con-
figuration options or has a customized build step. Most 
build configurations are just different enough from one 
another that some human intervention in the initial 
build process is still required.

Exercising program functionality. Exercising program 
functionality is the second big challenge of automated 
auditing. End-user applications have a single entry 
point (that is, main) but process several command line 
flags that affect the program. Shared libraries export a 
range of functionality via different exported symbols. 
How program or library functionality should be used is 
not defined at a machine level, but via documentation 
(which is sometimes lacking).

To illustrate, let’s use zlib as a motivating example. 
The usual entry points into zlib are compress and 
uncompress, but zlib also offers gzip wrappers around 
the standard library file functions (for example, gzopen, 
gzread, gzwrite and so on), checksumming function-
ality, and more. To test the whole library, a program or 

multiple programs must be written to invoke these func-
tions. In Cyberdyne parlance, the small programs that 
feed input to functionality under test are called drivers. 
Developing drivers to exercise all program functionality 
is a part of the initial manual test setup process required 
to use Cyberdyne to audit Linux software.

Driver development ranges from the trivial to the com-
plex, depending on how many entry points the underlying 
software has. Applications that accept file inputs typically 
need a single trivial driver (for example, call the main func-
tion with stdin as the input file). Shared libraries require 
many carefully written drivers that demand a thorough 
understanding of the software under test.

Depending on the software under test, other factors 
may also come into play during driver development: 
How do you set bounds on inputs to software that 
accepts unbounded input lengths? How do you best 
mock system configuration files read by the software? 
What are realistic values for mocked resource limits?

Even though it sounds like creating drivers is a daunt-
ing task, automation comes to the rescue once again. 

Because the actual auditing 
is fully automated, 
driver development 
can be iterative. An 
initial driver just 
needs to feed input 
to some part of the 
software. That driver 
will then start the 

initial audit. As the initial 
audit runs, any newly developed drivers can be added to 
Cyberdyne to increase the breadth of tested code.

The Future of Automated Code Audits
Despite the challenges, automated code audits are the 
future of security testing. Human auditors are rare and 
expensive and simply cannot keep up with the volume 
of newly written code. Automation will democratize 
access to security: low-cost, high-coverage testing will 
finally be within reach of individual developers and 
open source projects. The revolution in security test-
ing will dramatically improve the security posture of the 
Internet’s core infrastructure.

The automated auditing revolution has already 
begun. Projects like Google’s oss-fuzz project and Cov-
erity Scan already enable continuous fuzzing and static 
analysis checking of open source applications. We envi-
sion a future where services like Cyberdyne integrate 
with common continuous integration and code-hosting 
environments to deliver quality, low-cost security 
audits. Initially, automated audits will be a complement 
to unit and integration tests—something that good soft-
ware developers use to ensure they ship quality code.

Automation will democratize access to 

security: low-cost, high-coverage testing will 

finally be within reach of individual  

developers and open source projects.



www.computer.org/security 69

As automated audit technologies mature, objective 
security metrics will slowly become meaningful and 
change the economics of software security for the bet-
ter. Imagine if software came with verifiable guarantees 
of “audited with Cyberdyne to 99.99 percent branch 
coverage.” The label wouldn’t guarantee bug-free opera-
tion, because exploitable vulnerabilities may still exist 
in edge cases, but it would be meaningful way to com-
pare software products. Once objective security mea-
sures influence software purchasing decisions, there 
will finally be an economic reward for writing software 
securely. The economic incentives will create a virtuous 
cycle of better analysis tools, higher-quality software, 
and a more secure world for all.

T here are no magic numbers that make Cyberdyne 
find bugs. There are reasons why even just one 

single-threaded GRR process can perform a million 
mutate, execute, and code coverage measurement cycles 
per hour. The decisions that we made were guided by 
a performance-focused mindset, and backed up with 
measurements. Our approach is general and broadly 
applicable to other bug-finding systems. The approach 
provides a framework for 
tackling issues when 
scaling vulnerability 
discovery, for instance, 
sidestepping state 
explosion in symbolic 
executors.

The tools and con-
cepts developed for 
the Cyber Grand Challenge 
can be used on practical soft-
ware. Cyberdyne demonstrated this by performing the 
first paid automated security audit for the Mozilla SOS 
fund. The automated audit of zlib delivered higher confi-
dence at a lower cost and faster timeframe than was pos-
sible with qualified human code auditors.

Automation represents a shift in the way that 
software security audits can be performed. It’s a tre-
mendous step toward securing the Internet’s core 
infrastructure. Automation can deliver continuous, 
low-cost, and effective security analysis. Other projects 
have already adopted this model: Google’s oss-fuzz 
project enables continuous fuzzing of open source 
applications. We envision a similar future for Cyber-
dyne: a service that works with popular code-hosting 
and continuous integration environments and deliv-
ers quality, low-cost, continuous security audits. As 
automated tools improve, we believe they can finally 
upend the economics of software development to 
reward safety instead of features by providing objective, 

comparable security metrics across disparate software 
packages. 
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