RaceSanitizer: Sampling for Data Races

TQA L Peter Goodman Angela Demke Brown Ashvin Goel T ERETT (O
OIB TOC Trail of Bits, University of Toronto TO RONTO

How do data races happen! Why are data races bad!?

* Two threads operate on the same data simultaneously * Introduce non-determinism and undefined behavior

* At least one thread writes to memory * Hide behind unexercised thread interleavings

* Neither memory access is atomic * Decrease portability (weak vs. strong memory models)

RaceSanitizer comprehensively samples all memory accesses

Goal: Instrument all memory accesses to look for

data races TypelD >
Data Watchpoints Address OxE00

Key ldea: Use infinite data watchpoints to track
which threads access what memory

Thread Thread

Challenge: Tracking every memory access is inefficient in1fo inzfo
Solution: Instrument all memory accesses that touch a .
, Cache Lines
chosen sample of the entire memory space Sample Table

RaceSanitizer analyzes representative samples of memory

Challenges: N

* Access patterns: "hot" data accessed very often sample Set1 | ||

* Non-uniformity: more objects of one type than of another l .
o

Solutions: Sample Set 2 [FEE g

* Sample from recently allocated objects
* Group candidate objects by type
* Sample one group of same-typed objects at a time

SampIeSet3| | | |

RaceSanitizer waits for data races to happen then catches them in the act

Thread |: Reads and writes to the shared variable X Thread 2: Concurrently writes to the shared variable X
while Thread 1 is sleeping

if (is_data_watched(&x)) {

prev_count = increment_access_count(&x); if (is_data_watched(&x)) {
if (!prev_count) { prev_count = increment_access_count(&x);
record(&x, thread_info); if (!prev_count) {
sleep(10ms); record(&x, thread info);
remove_watchpoint (&x); sleep(léms);
} else if (1 == prev _count && remov?_watchp01nt(&x);
is data watched(&x)) { } else if (1 == prev_count &&
report(&x, thread info); is_data_watched(&x)) {
} report(&x, thread info);
} }
X++; }
X = 1;

Data race in ranges [@Ox7fc3aebee820, Ox7fc3aebee828) of object of size 2140504 bytes allocated at 9Ox7fc3aebecOl0
(bytes 10256 to 10264)
Allocated by:
/home/pag/Code/parsec-3.0/ext/splash2x/apps/volrend/obj/amd64-1inux.rsan/main.C:135
/home/pag/Code/parsec-3.0/ext/splash2x/apps/volrend/inst/amd64-1linux.rsan/bin/volrend:0x405986

Other features of RaceSanitizer Where is the code!

* Low overhead: up to 30% (future work: optimization) You can find RaceSanitizer on the Trail of Bits GitHub page at:
* No false-positives
* False-negatives if some code doesn't use -fsanitize=race https://github.com/trailofbits/RaceSanitizer

