
RaceSanitizer: Sampling for Data Races
Peter Goodman Angela Demke Brown Ashvin Goel

Trail of Bits, University ofToronto

How do data races happen? Why are data races bad?

• Two threads operate on the same data simultaneously
• At least one thread writes to memory
• Neither memory access is atomic

• Introduce non-determinism and undefined behavior
• Hide behind unexercised thread interleavings
• Decrease portabil ity (weak vs. strong memory models)

RaceSanitizer comprehensively samples al l memory accesses

RaceSanitizer analyzes representative samples of memory

Goal: Instrument all memory accesses to look for
data races

Key Idea: Use infinite data watchpoints to track
which threads access what memory

Challenge: Tracking every memory access is inefficient

Solution: Instrument all memory accesses that touch a
chosen sample of the entire memory space

Challenges:
• Access patterns: "hot" data accessed very often
• Non-uniformity: more objects of one type than of another

Solutions:
• Sample from recently al located objects
• Group candidate objects by type
• Sample one group of same-typed objects at a time

RaceSanitizer waits for data races to happen then catches them in the act

Thread 1 : Reads and writes to the shared variable X Thread 2: Concurrently writes to the shared variable X

whileThread 1 is sleeping

• Low overhead: up to 30% (future work: optimization)
• No false-positives
• False-negatives if some code doesn't use

You can find RaceSanitizer on the Trail of Bits GitHub page at:

https://github.com/trailofbits/RaceSanitizer

Other features of RaceSanitizer Where is the code?




