
1

PowerFL:
Fuzzing VxWorks
embedded systems

Peter Goodman
Artem Dinaburg
Trent Brunson

Trail of Bits | QPSS 2019 | 16.05.2019

Introductions

Peter Goodman
Senior Security Engineer

peter@trailofbits.com

Artem Dinaburg
Principal Security Engineer

artem@trailofbits.com

Trent Brunson
Director of R&D

trent.brunson@trailofbits.com

2
2

Trail of Bits | QPSS 2019 | 16.05.2019

PowerFL: A VxWorks bug-finding capability

● Combines the AFL fuzzer with the QEMU virtual machine
to fuzz PowerPC and Intel i386 VxWorks targets on
commodity computers

● Approach generalizes beyond VxWorks (e.g. to
automotive and SCADA systems)

3

+ AFL = PowerFL

Trail of Bits | QPSS 2019 | 16.05.2019

It vxworks, but it’s not magic!

● We developed a prototype that proves that
semi-automated bug-finding for embedded VxWorks
targets is feasible
● It is not a production quality bug finding powerhouse

● Based on proven technologies (AFL fuzzer, QEMU)

● Requires varying levels of manual setup and analysis
depending on the target
● Most targets won’t work out of the box

4

Trail of Bits | QPSS 2019 | 16.05.2019

● DARPA Cyber Grand Challenge pitted machines against
machines to automatically find, exploit, and patch bugs
● CGC avoided the problem of figuring out how to run the program,

how/where the program reads input, etc.

● Real world programs are much more varied
and embedded systems (e.g. VxWorks) are a
nightmare of variety

● Can we generalize CGC systems
to real programs?

Automated bug finding: fact or fiction?

5

Trail of Bits | QPSS 2019 | 16.05.2019

From CGC to PowerFL: Embedded systems

● CGC similarities
● Mostly programmed in C and assembly, often implement POSIX-like I/O

● Distributed as one or two self-contained programs/executables

● Real-world differences
● Variety of hardware (sub)architectures. Will not “just run”.

● Variety of I/O interfaces, not necessarily well-specified (e.g. MMIO)

● Variety of input sources, the subset of which are “interesting” from an
attacker perspective is a priori unknown

6

Trail of Bits | QPSS 2019 | 16.05.2019

● Cars, SCADA and defense platforms run VxWorks
● They’re system-of-systems, with many individual parts communicating

over one or more shared networks

● Some of this hardware runs old
versions of VxWorks

● Assess and improve security
and reliability of physical systems
● Hardware may be on a deployment,

unique, explosive, or unavailable

Embedded systems of consequence: VxWorks

7

Trail of Bits | QPSS 2019 | 16.05.2019

VxWorks is a real-time operating system

● Really just a big program, with lots of #ifdefs that
configure what components are included
● Built from optional components: serial I/O, FTP, NTFS, FAT, etc.
● Not general-purpose: configured to run on specific hardware, with a

known amount of RAM, and a set of number of devices

● Two common ways of using VxWorks
● User program linked against the kernel, included in the kernel image

● User program downloaded over the network (e.g. FTP), or read from
the local file system

8

Trail of Bits | QPSS 2019 | 16.05.2019

AFL is a fuzzer

● AFL generates mutated program inputs and determines
whether the new input triggers a bug in the target

● AFL is effectively a genetic algorithm that searches
through the set of all possible inputs
● Code coverage is the fitness function, various mutation operators

● AFL works on source-available user-mode programs
● VxWorks meets neither of these requirements

● Using AFL to fuzz unmodifiable kernel-mode programs?
9

Trail of Bits | QPSS 2019 | 16.05.2019

QEMU is an emulator

● QEMU is a whole-system emulator that emulates a wide
variety of CPUs and peripherals
● Including multiple PowerPC reference boards

● Uses a common intermediate representation (TCG) to
handle a variety of processors.
● Instrumentation code is largely portable across processors

● We can implement code-coverage as a part of the translation process

● Provides cross-architecture and cross-operating system
execution and code coverage

10

Trail of Bits | QPSS 2019 | 16.05.2019

PowerFL = AFL + QEMU + VxWorks

● PowerFL can fuzz across architecture and OS boundaries
● Novel solutions for i/o passthrough, crash/idle detection, device hooks.

11

Trail of Bits | QPSS 2019 | 16.05.2019

Fuzzing VxWorks: Our incredible journey

12

(0/11)

● Let’s go on a journey to discover how PowerFL works and
the rationale behind our design decisions
● Provides context for why a feature exists, not just how PowerFL works

● Start with a goal, describe the challenges, and our solution.

● Each solution generates new sub-problems

● Our decisions were driven by limited resources and the
need to rapidly develop a working prototype
● We are open to improvements and suggestions

Trail of Bits | QPSS 2019 | 16.05.2019

Fuzzing VxWorks: Our incredible journey

● Goal: Fuzz VxWorks PowerPC targets

● Challenge: Lack experience with both VxWorks RTOS and
PowerPC architecture

● Solution: Fuzz VxWorks x86 targets, port system to
PowerPC when we have a fuzzing capability
● We have a lot of experience with the Intel i386 (x86) architecture
● Mitigated risk by handling only one unknown at a time
● Bonus: Extra capability: x86 and PowerPC
● Sub-problem: how do you fuzz VxWorks targets?

13

(1/11)

Trail of Bits | QPSS 2019 | 16.05.2019

● Goal: Run afl-fuzz against VxWorks targets

● Challenge: AFL is a user-mode fuzzer, VxWorks+program
execute in supervisor mode

● Solution: Emulate VxWorks+program in QEMU, which
runs in user mode
● AFL embedded into QEMU, runs as separate thread
● QEMU and AFL threads coordinate their emulation and mutation
● Sub-problem: VM boot process is deterministic and wastes machine

time in a fuzzing campaign
14

Fuzzing VxWorks: Our incredible journey (2/11)

Trail of Bits | QPSS 2019 | 16.05.2019 15

Fuzzing VxWorks: Our incredible journey (2/11)

Trail of Bits | QPSS 2019 | 16.05.2019

● Goal: Run target as fast as possible

● Challenge: VxWorks must boot before target executes
● Bootloader unpacks and loads VxWorks kernel
● VxWorks kernel initializes devices and OS state
● Eventually target program executes

● Solution: Snapshot VM state when the user program
initiates its first I/O operation
● Sub-problem: When does the target perform its first I/O operation?

16

Fuzzing VxWorks: Our incredible journey (3/11)

Trail of Bits | QPSS 2019 | 16.05.2019

● Goal: Interpose on specific guest functions to get
“semantic visibility” -- know what the guest is doing
● I/O operations, scheduler, exception handlers, device initialization, etc.

● Challenge: Hook execution at arbitrary points

● Solution: Robust function hooking
● Hooks injected during QEMU JIT translation
● Hook function entry points by program counter
● Hook function exit points by overwriting return addresses on stack
● Sub-problem: stripped target binaries without symbols

17

Fuzzing VxWorks: Our incredible journey (4/11)

Trail of Bits | QPSS 2019 | 16.05.2019

● Goal: Hook any function by name

● Challenge: Stripped binaries without symbol names

● Solution: Heuristic function matching
● Baseline: Symbolized VxWorks for same architecture, built from source
● IDA scripts identify functions in stripped binary using info derived from

symbolized binary: string cross references, call graph structure, opcode
sequences, and FLIRT signatures

● Mappings saved in symbol file, loaded by PowerFL
● Caveat: not a 100% solution, some manual effort required

18

Fuzzing VxWorks: Our incredible journey (5/11)

Trail of Bits | QPSS 2019 | 16.05.2019

● Goal: Support devices/peripherals needed by target

● Challenge: Many VxWorks configurations have
incomplete QEMU emulation support
● Many devices needed by target lack QEMU emulation support

● Solution: Manually and automatically identify
problematic code, stub it out with function hooks
● Identified problematic functions can be “stubbed out” by naming those

addresses as powerfl_suppress_N in symbol map file
● Sub-problem: Identify functions that might be for device setup

19

Fuzzing VxWorks: Our incredible journey (6/11)

Trail of Bits | QPSS 2019 | 16.05.2019

● Goal: Finding what functions to stub in order to “get
beyond” initialization of unsupported devices

● Solution: Visual diff of function traces, look for callers of
pci-related functions, function names ending in “Init”

20

Fuzzing VxWorks: Our incredible journey (7/11)

Trail of Bits | QPSS 2019 | 16.05.2019

● Goal: Feed mutated input files from AFL into the target

● Challenge: Feeding files from the host into the guest
● AFL is a file fuzzer
● Does the target read input from files? If so, where are they stored?
● If the the target reads files, then how do we get mutated inputs from

the host file system into the guest file system?

● Solution: Implement transparent file I/O passthrough
● Shadow guest file operations into host file system
● Sub-problem: target program likely doesn’t support virtio drivers

21

Fuzzing VxWorks: Our incredible journey (8/11)

Trail of Bits | QPSS 2019 | 16.05.2019

● Goal: Transparent (guest unaware) I/O passthrough

● Challenge: VxWorks is not general purpose; pre-built
binaries not configured with virtual I/O driver support
● Unlike TriforceAFL, we can’t load in our own drivers or programs into

the guest

● Solution: Hook and translate I/O function effects into
“mounted” directory on host
● Write bytes from host-to-guest on reads
● Read bytes from guest-to-host on writes

22

Fuzzing VxWorks: Our incredible journey (9/11)

Trail of Bits | QPSS 2019 | 16.05.2019

● Goal: Detect if input drove guest to execute new code

● Challenge: Interrupts trigger false-positive code coverage
● Non-deterministic events that trigger control-flow transfers; don’t want

these transfers to count for spurious “new” coverage

● Solution: Instrument JIT-translated guest code, hook
interrupt service routines
● Block entry points instrumented to conditionally update a bit in a

coverage hash map if not executing in an interrupt handler
● Novel coverage instrumentation that is sensitive to self-modifying code

23

Fuzzing VxWorks: Our incredible journey (10/11)

Trail of Bits | QPSS 2019 | 16.05.2019

● Goal: Run target as many times as possible

● Challenge: Detecting when the target is “done”
● OS kernels (i.e. VxWorks) don’t halt unless instructed, so the VM will

continue going even if the target is logically “done” processing input
● No “idle function” in VxWorks PPC32

● Solution: Detect when the kernel goes idle
● Summarize execution paths between task schedulings
● Repeated executions of same code paths signals idleness

24

Fuzzing VxWorks: Our incredible journey (11/11)

Trail of Bits | QPSS 2019 | 16.05.2019

DEMO

Trail of Bits | QPSS 2019 | 16.05.2019

Goal: Speed up the fuzzer to do more executions per second

● Preserve QEMU code translations between
execute-snapshot reload cycles
● The VxWorks kernel and target is loaded at the same code locations in

every run, so QEMU should not re-translate (part of virtualization) the
target machine code that it can take from a prior run

● Ahead-of-time translation and optimization of target
machine code to QEMU TCG

26

The path from prototype to production (1/4)

Trail of Bits | QPSS 2019 | 16.05.2019

Goal: Make it easier to adopt a new embedded system

● Key roadblock is lack of emulation support for hardware
and devices needed by target software
● Fundamental “modelling” issue
● Symbolic execution may be appropriate (e.g. via the QEMU-based S2E)
● We anticipate 1 month of effort to bring up a new system, with

decreasing integration effort over time as synergies are recognized

● Need more tooling to help users identify and handle or
stub out code that initializes or interacts with devices

27

The path from prototype to production (2/4)

Trail of Bits | QPSS 2019 | 16.05.2019

Goal: Handle new and unique input sources

● Currently hook functional interfaces, e.g. POSIX-like I/O,
that wrap around devices
● Need to implement passthrough for memory-mapped I/O
● First problem is to even know that direct memory accesses ought to be

backed by memory-mapped I/O is not always obvious

● Targets with rigid interrupt timing requirements, or
where the I/O is the sequence of incoming interrupts

28

The path from prototype to production (3/4)

Trail of Bits | QPSS 2019 | 16.05.2019

Goal: Keeping the tooling up-to-date

● Depend on two open-source tools (AFL and QEMU)
● New Major QEMU release since project started

● 99% of code isolated to PowerFL-specific directories,
making upgrading QEMU straightforward

● AFL is rarely updated, but keeping up-to-date should not
be too challenging
● Fun fact: we found a bug in AFL and fixing it makes our fuzzer more

effective, so perhaps we are already “ahead”
29

The path from prototype to production (4/4)

Trail of Bits | QPSS 2019 | 16.05.2019

● Developed a VxWorks fuzzing prototype for embedded
systems
● Fuzz a hardware platform without the platform or explosions
● Doesn’t require the hardware, though hardware knowledge helps
● Approach is broadly applicable (e.g. to automotive and SCADA systems)

● Next step is to evolve a production quality capability
● Speed up bug-finding capability
● Speed up adoption time of new targets

30

In summary, we conclude

Trail of Bits | QPSS 2019 | 16.05.2019

Peter Goodman: peter@trailofbits.com
Artem Dinaburg: artem@trailofbits.com
Trent Brunson: trent.brunson@trailofbits.com

Website: https://trailofbits.com
Blog: https://blog.trailofbits.com
Twitter: @trailofbits

https://trailofbits.com
https://blog.trailofbits.com

