CYBERDYNE:

Automatic bug-finding at
scale

Peter Goodman
COUNTERMEASURE 2016

Cyberdyne (ex)terminates bugs Rl

=" Finds bug in binaries

= Combines different techniques

" Coverage-guided fuzzing
= Symbolic execution

Get to know the mind of the machine 7.

= Part 1: high level architecture
" How to coordinate bug-finding tools

= Part 2: low level tools
" How do the bug-finding tools work?

History: Cyber Grand Challenge (1)

\

\s‘a i
Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

g T el R

History: Cyber Grand Challenge (2)

= Capture-the-flag (CTF) competition
" Goal: find and exploit bugs in binaries
" Goal: patch binaries

= Competitors were programs
" “Cyber Reasoning Systems” (CRS)

History: Cyber Grand Challenge (3)

= Shaped the design of Cyberdyne

= Distributed system
" Runs on any humber of nodes

= Automated system
" No human intervention required

Part 1
Skeleton of a bug-finding
system

Ideally, a bug-finding system should... .

" Find bugs
= Simple, right?

= Work on real programs
= Be easy to scale

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

When | grow up... i

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com 9

First kill: simple fuzzing (1) Bl

Mutation
Engine

Seed Inputs Mutated Inputs

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com 10

First kill: simple fuzzing (1) Bl

Radamsa,
zzuf,
etc.

Mutation

Engine Mutated Inputs

Seed Inputs

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com 11

First kill: simple fuzzing (2) Bl

Mutate Inputs
] EXxecute inputs

3 Profit?
" Find bugs!

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com 12

First kill: simple fuzzing (2) Bl

M Mutate inputs
Execute inputs

3 Profit?
" Find bugs!

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com 13

First kill: simple fuzzing (2) Bl

M Mutate inputs
M Execute inputs

Profit?
" Find bugs!

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com 14

First kill: simple fuzzing (2) B,

M Mutate inputs
M Execute inputs

) Profit?
" Find bugs!
" Right????

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com 15

First kill: simple fuzzing (2) Bl

M Mutate inputs
M Execute inputs

1 Risk of loss!
" No bugs found
" Lost cycles, time

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com 16

Misfire: Check your targets Bl

= Searching for bugs takes time

= Need accountability
" |sit worth it to keep searching?
" |s progress being made?

= How do we measure progress?

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Reload: Track bug-finding progress B

" |dea: has something new happened?

= Track when new code is executed

" (Code coverage: Instrument program to
detect when new code is executed

" |nputs that cover new code signal
progress

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Need more ammo B,

= Eventually hit a “coverage ceiling”
" Decreasing marginal returns

= Need heavier guns

" Coverage-guided fuzzing: re-seed with
inputs that got new coverage (next)

" Symbolic execution (later)

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Coverage-guided mutational fuzzing (1) %

(-
o

y &

Step1 Step 2 Step 3 Step 4
Mutate Execute Gets new Re-seed
inputs mutations Crashes! Coverage? mutator

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com 20

Coverage-guided mutational fuzzing (1) %

AFL

Step1 Step 2 (0 Step 3 Step 4
Mutate Execute = Gets new Re-seed

inputs mutations Crashes! Coverage? mutator

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com 21

Coverage-guided mutational fuzzing (2) ™.

= Trivially parallelizable
" Run mutation engines concurrently

= Scaling fuzzing in Cyberdyne
= Fuzzer service internalizes mutation,
execution, code coverage

" Runs many fuzzers, one mutator each

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Look under the skin of Cyberdyne (1) .

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Look under the skin of Cyberdyne (2)

TRAIL
OF To

B'7S

@® Terminator

cyberdyne start
cyberdyne analyze -pr..
cyberdyne launch nukes

LLLLILL

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

24

Look under the skin of Cyberdyne (3) ™

Fuzzer (with GRR)

= Mutates and
executes inputs

= Easy to scale

Look under the skin of Cyberdyne (4) ™

PyYSymEmu

= (Coverage-guided
binary symbolic
executor

= Harder to scale

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Look under the skin of Cyberdyne (5) ™

KLEE (with McSema)

= LLVM Dbitcode
symbolic executor

= Hard to use
= Hard to scale

ERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

KA, B

Look under the skin of Cyberdyne (6) .

Oracle

= Gatekeeper
for minset

= Detects crashes
= Easy to scale

Look under the skin of Cyberdyne (7)

Minset

= Finds inputs that get
hew code coverage

= One input at a time
= PBottleneck?

Iﬁ/i/io
B'TS

Part 2
The servos and the gears

How it works: Minset (1) B,

= What is it?
= Minimum set of inputs that produce
maximum code coverage

= Why use it?
" |dentify “interesting” inputs
" Good candidates for exploration

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

How it works: Minset (2) B,

'J

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com 32

'J

How it works: Minset (3) Bl

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com 33

How it works: Minset (4) Bhjh,

o

X Cov(ly) € Cov(ly) U Cov(ly)

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com 34

How it works: Minset (5) B,

g

112 pge

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com 35

How it works: Minset (6) Bl

= Redundancy within the Minset
" First input tested guaranteed entry

» Newly added inputs tend to cover
same code as old inputs

= |dea: fold the minset
= Reconstruct it in reverse order

'J

How it works: Minset (7) Bl

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com 37

'J

How it works: Minset (8) Bl

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com 38

How it works: Minset (9) BAjh

nov edi g edi
qward [rdi+dsts_cledes]
rdn
4dse
. ex1
i, guard [rdirdata_6le3es]
6Bdtdda8 cmp byte [rai], Gud 60484481 cmp rdx, Bx2

X Cov(l,) S Cov(l,) U Cov(l,)

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com 39

How it works: Minset (10) Bl

= Corpus distillation is fast and easy
" |f bottleneck, map and reduce

= What they don't tell you
" What you measure is important
= Different metrics, different features
" Fold to compose metrics/features

The gears don't fit B

" Minset is friendly

" Doesn’t care who or what produced
the inputs (e.g. fuzzer, symexec)

» Challenge: cooperation

" Make two independent bug-finding
tools coordinate to discover bugs

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cooperation among friends (1)

@® Terminator

cyberdyne start
cyberdyne analyze -pr..
cyberdyne launch nukes

SSSSSS
SSSSSS

\\es Symbolic executor
produces an input

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

42

~A2 Input from symexec

N\

is added to minset

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com 43

@® Terminator

cyberdyne start
cyberdyne analyze -pr..
cyberdyne launch nukes

Input from symexec
seeds the fuzzer

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com 44

@® Terminator

cyberdyne start
cyberdyne analyze -pr..
cyberdyne launch nukes

Fuzzer mutates input
from symexec

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com 45

@® Terminator

cyberdyne start
cyberdyne analyze -pr..
cyberdyne launch nukes

Mutated input is
added to the minset

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com 46

Cooperation among friends (6) Bl

~[Q2 How do we symexec
a fuzzed input?

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com 47

Cooperation among friends (7)

@® Terminator

cyberdyne start
cyberdyne analyze -pr..
cyberdyne launch nukes

I om ¥
$SSSSS

N\ Easy way to scale:
partial symexec

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

48

Some friendships are a lot of work Bl

= Symbolic executors are monolithic
" Reason about all program paths
" Somehow use theorem provers
" Bugs fall out the other end...?

* Challenge: make symexec
cooperate in a scalable way

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

How it works: symbolic execution (1) %

= All input bytes are “symbols”

= Fork execution when if-then-else
branch depends on symbolic input

= Follow feasible branches, record
tested constraints down each path

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

How it works: symbolic execution (2) %

= Special kind of CPU emulator

= Registers/memory can hold bytes,
symbols, or symbolic expressions

" |nstructions emulated in software

" Simulates operations of instructions to
work with symbols and bytes

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

How it works: symbolic execution (3)

O @ 080480b8 eax = [symbol].d
1l @ 080480cO® 1if (eax s>= 0xa) then 2 @ Ox80480c8 else 3 @ Ox80480c2

‘\
| ¢

2 @ 080480c8 <return> jump(pop) 3 @ 080480c2 jump([eax + jump_table].d)

eax = BitVec(32) symbol €[-23%, 231-1]

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

How it works: symbolic execution (4) %

O @ 080480b8 eax = [symbol].d
1l @ 080480cO® 1if (eax s>= 0xa) then 2 @ Ox80480c8 else 3 @ Ox80480c2

‘\
| ¢

2 @ 080480c8 <return> jump(pop) 3 @ 080480c2 jump([eax + jump_table].d)

eax = BitVec(32) symbol e[-23%, 231-1] \

eax >= 0Oxa eax < Oxa
symbol € [10, 23!-1) symbol € [-23%, 10)

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

How it works: symbolic execution (5)

TRAIL .
B'7S

O @ 080480b8 eax = [symbol].d
1l @ 080480cO® 1if (eax s>= 0xa) then 2 @ Ox80480c8 else 3 @ Ox80480c2

l

2 @ 080480c8 <return> jump(pop)

}

3 @ 080480c2 jump([eax + jump_table].d)

eax = BitVec(32)

symbol € [-23%, 231-1]

eax >= Oxa
symbol € [10, 23!-1)
return

eax < Oxa
symbol € [-23%, 10)

symbol € [0, 10)
jump with table

symbol € [-23%, 0)

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

There’s too many of them!

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Symbolic execution is hard to scale Bl

= Symbolic executors fork a lot!
" Branches, loops, branches in loops

" Takes too long to get deep into the
program, only finds shallow bugs

" Heuristics, like coverage-guided
exploration, are band-aids

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Easy way to scale symbolic execution .

= Partial symbolic execution
" Jump deep into a program using a
concrete input prefix

= Trivially parallelizable

" Run independent symbolic
executors with different prefixes

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

End of days

\

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com 58

SSSSSS
SSSSSS

@® Terminator

cyberdyne start
cyberdyne analyze -pr..
cyberdyne launch nukes

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

59

Skeleton of a bug-finding system (2) ™.

= Started with simple fuzzing
" Added accountability

= Coverage-guided mutational fuzzing
" Sets groundwork for new tools

" Going from there
= Minset as the mediator

il of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11 .17.2016 | tra ilofbits.com

The servos and the gears B

» Mediating with the minset
" Fuzzer cooperates with anything

" Symbolic executors need a bit
more massaging

= The path to scalability
" Go for trivial parallelization

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cyberdyne kills bugs...now you can too! .

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Let’s chat

Peter Goodman
Senior Security Engineer

peter@trailofbits.com

