
CYBERDYNE:
Automatic bug-finding at
scale

Peter Goodman

COUNTERMEASURE 2016

2

 Finds bug in binaries

 Combines different techniques

 Coverage-guided fuzzing
 Symbolic execution

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cyberdyne (ex)terminates bugs

3

 Part 1: high level architecture
 How to coordinate bug-finding tools

 Part 2: low level tools
 How do the bug-finding tools work?

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Get to know the mind of the machine

4Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

History: Cyber Grand Challenge (1)

5Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

 Capture-the-flag (CTF) competition

 Goal: find and exploit bugs in binaries

 Goal: patch binaries

 Competitors were programs

 “Cyber Reasoning Systems” (CRS)

History: Cyber Grand Challenge (2)

6Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

 Shaped the design of Cyberdyne

 Distributed system
 Runs on any number of nodes

 Automated system
 No human intervention required

History: Cyber Grand Challenge (3)

Part 1
Skeleton of a bug-finding

system

7Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

8

 Find bugs
 Simple, right?

 Work on real programs

 Be easy to scale

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Ideally, a bug-finding system should …

9Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

When I grow up …

10Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

First kill: simple fuzzing (1)

Splice

Slice

Bit
flips

Byte
flips

Seed Inputs
Mutation

Engine
Mutated Inputs

11Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

First kill: simple fuzzing (1)

Seed Inputs
Mutation

Engine
Mutated Inputs

Radamsa,
zzuf,
etc.

12Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

First kill: simple fuzzing (2)

 Mutate inputs

Execute inputs

…

Profit?
 Find bugs!







12 1
2

3

4
567

8
9

10
11

Terminator

pag@sloth:~/ cyberdyne start
pag@sloth:~/ cyberdyne analyze –program
foo –binaries bar
pag@sloth:~/ cyberdyne seed –program foo –
inputs ./inputs/*

13Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

First kill: simple fuzzing (2)

 Mutate inputs

 Execute inputs

…

Profit?
 Find bugs!







12 1
2

3

4
567

8
9

10
11

Terminator

pag@sloth:~/ cyberdyne start
pag@sloth:~/ cyberdyne analyze –program
foo –binaries bar
pag@sloth:~/ cyberdyne seed –program foo –
inputs ./inputs/*

14Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

First kill: simple fuzzing (2)

 Mutate inputs

 Execute inputs

…

Profit?
 Find bugs!







12 1
2

3

4
567

8
9

10
11

Terminator

pag@sloth:~/ cyberdyne start
pag@sloth:~/ cyberdyne analyze –program
foo –binaries bar
pag@sloth:~/ cyberdyne seed –program foo –
inputs ./inputs/*

15Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

First kill: simple fuzzing (2)

 Mutate inputs

 Execute inputs

…

Profit?
 Find bugs!
 Right????







12 1
2

3

4
567

8
9

10
11

Terminator

pag@sloth:~/ cyberdyne start
pag@sloth:~/ cyberdyne analyze –program
foo –binaries bar
pag@sloth:~/ cyberdyne seed –program foo –
inputs ./inputs/*

16Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

First kill: simple fuzzing (2)







Terminator

pag@sloth:~/ cyberdyne start
pag@sloth:~/ cyberdyne analyze –program
foo –binaries bar
pag@sloth:~/ cyberdyne seed –program foo –
inputs ./inputs/*

 Mutate inputs

 Execute inputs

…

Risk of loss!
 No bugs found
 Lost cycles, time

17

 Searching for bugs takes time

 Need accountability
 Is it worth it to keep searching?
 Is progress being made?

 How do we measure progress?

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Misfire: Check your targets

18

 Idea: has something new happened?

 Track when new code is executed
 Code coverage: Instrument program to

detect when new code is executed
 Inputs that cover new code signal

progress

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Reload: Track bug-finding progress

19

 Eventually hit a “coverage ceiling”
 Decreasing marginal returns

 Need heavier guns
 Coverage-guided fuzzing: re-seed with

inputs that got new coverage (next)
 Symbolic execution (later)

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Need more ammo

Crashes!

20Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Coverage-guided mutational fuzzing (1)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

Step 1
Mutate
inputs

Step 2
Execute
mutations

Step 3
Gets new
Coverage?

Step 4
Re-seed
mutator

Crashes!

21Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Coverage-guided mutational fuzzing (1)

Step 1
Mutate
inputs

Step 2
Execute
mutations

Step 3
Gets new
Coverage?

Step 4
Re-seed
mutator

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukesAFL

22

 Trivially parallelizable
 Run mutation engines concurrently

 Scaling fuzzing in Cyberdyne
 Fuzzer service internalizes mutation,

execution, code coverage
 Runs many fuzzers, one mutator each

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Coverage-guided mutational fuzzing (2)

Look under the skin of Cyberdyne (1)

23Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

24Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Look under the skin of Cyberdyne (2)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

25Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Look under the skin of Cyberdyne (3)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

Fuzzer (with GRR)

 Mutates and

executes inputs

 Easy to scale

26Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Look under the skin of Cyberdyne (4)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

PySymEmu

 Coverage-guided

binary symbolic

executor

 Harder to scale

27Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Look under the skin of Cyberdyne (5)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

KLEE (with McSema)

 LLVM bitcode

symbolic executor

 Hard to use

 Hard to scale

28Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Look under the skin of Cyberdyne (6)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

Oracle

 Gatekeeper

for minset

 Detects crashes

 Easy to scale

29Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Look under the skin of Cyberdyne (7)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

Minset

 Finds inputs that get

new code coverage

 One input at a time

 Bottleneck?

Part 2
The servos and the gears

30Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

31

 What is it?
 Minimum set of inputs that produce

maximum code coverage

 Why use it?
 Identify “interesting” inputs
 Good candidates for exploration

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

How it works: Minset (1)

32Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com

How it works: Minset (2)

2

3
4

4
3

1 2 3 4

2
1 1

3
4

33Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com

How it works: Minset (3)

2

4
3

1 2 3 4

1
2

1

4

2

3

34Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com

How it works: Minset (4)

4

1 2 3 4

1
3

2
1

𝐶𝑜𝑣(𝐼3) ⊆ 𝐶𝑜𝑣(𝐼1) ∪ 𝐶𝑜𝑣(𝐼2)

2

3

35Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com

How it works: Minset (5)

4

1 2 3 4

3
2

1 4 1

36

 Redundancy within the Minset
 First input tested guaranteed entry
 Newly added inputs tend to cover

same code as old inputs

 Idea: fold the minset
 Reconstruct it in reverse order

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

How it works: Minset (6)

2

37Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com

How it works: Minset (7)

124

1

1
2

4 4

1

2

38Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com

How it works: Minset (8)

124

1
2

4 4

2

1

39Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 09.17.2016 | trailofbits.com

How it works: Minset (9)

124

2
4 4 1

𝐶𝑜𝑣(𝐼1) ⊆ 𝐶𝑜𝑣(𝐼4) ∪ 𝐶𝑜𝑣(𝐼2)

40

 Corpus distillation is fast and easy
 If bottleneck, map and reduce

 What they don’t tell you
 What you measure is important
 Different metrics, different features
 Fold to compose metrics/features

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

How it works: Minset (10)

41

 Minset is friendly
 Doesn’t care who or what produced

the inputs (e.g. fuzzer, symexec)

 Challenge: cooperation
 Make two independent bug-finding

tools coordinate to discover bugs

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

The gears don’t fit

42Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cooperation among friends (1)

Symbolic executor
produces an input

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

ssssss
ssssss

43Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cooperation among friends (2)

Input from symexec
is added to minset

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

44Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cooperation among friends (3)

Input from symexec
seeds the fuzzer

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

45Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cooperation among friends (4)

Fuzzer mutates input
from symexec

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

46Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cooperation among friends (5)

Mutated input is
added to the minset

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

47Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cooperation among friends (6)

How do we symexec
a fuzzed input?

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

48Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Cooperation among friends (7)

Easy way to scale:
partial symexec

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

ssssss
ssssss

49

 Symbolic executors are monolithic

 Reason about all program paths
 Somehow use theorem provers
 Bugs fall out the other end…?

 Challenge: make symexec

cooperate in a scalable way
Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Some friendships are a lot of work

50

 All input bytes are “symbols”

 Fork execution when if-then-else

branch depends on symbolic input

 Follow feasible branches, record

tested constraints down each path

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

How it works: symbolic execution (1)

51

 Special kind of CPU emulator
 Registers/memory can hold bytes,

symbols, or symbolic expressions
 Instructions emulated in software
 Simulates operations of instructions to

work with symbols and bytes

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

How it works: symbolic execution (2)

How it works: symbolic execution (3)

52Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

eax = BitVec(32) symbol ϵ [-231, 231-1]

How it works: symbolic execution (4)

53Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

eax = BitVec(32) symbol ϵ [-231, 231-1]

eax >= 0xa
symbol ϵ [10, 231-1)

eax < 0xa
symbol ϵ [-231, 10)

How it works: symbolic execution (5)

54Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

eax = BitVec(32) symbol ϵ [-231, 231-1]

eax >= 0xa
symbol ϵ [10, 231-1)

return

eax < 0xa
symbol ϵ [-231, 10)

symbol ϵ [0, 10)
jump with table

symbol ϵ [-231, 0)
error?!

There’s too many of them!

55Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

56

 Symbolic executors fork a lot!

 Branches, loops, branches in loops
 Takes too long to get deep into the

program, only finds shallow bugs
 Heuristics, like coverage-guided

exploration, are band-aids

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Symbolic execution is hard to scale

57

 Partial symbolic execution

 Jump deep into a program using a
concrete input prefix

 Trivially parallelizable

 Run independent symbolic
executors with different prefixes

Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Easy way to scale symbolic execution

End of days

58Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

59Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Skeleton of a bug-finding system (1)

Terminator

cyberdyne start
cyberdyne analyze –pr…
cyberdyne launch nukes

ssssss
ssssss

ssssss
ssssss

ssssss
ssssss

60

 Started with simple fuzzing

 Added accountability

 Coverage-guided mutational fuzzing

 Sets groundwork for new tools

 Going from there

 Minset as the mediator
Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Skeleton of a bug-finding system (2)

61

 Mediating with the minset

 Fuzzer cooperates with anything
 Symbolic executors need a bit

more massaging

 The path to scalability

 Go for trivial parallelization
Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

The servos and the gears

Cyberdyne kills bugs...now you can too!

62Trail of Bits | CYBERDYNE: Automatic Bug-Finding at Scale | 11.17.2016 | trailofbits.com

Let’s chat

peter@trailofbits.com

Senior Security Engineer

Peter Goodman

