
1DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Dr. Lojekyll

The Mr. Hyde of Datalog Engines

Peter Goodman
Sonya Schriner
Eric Kilmer

2DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Agenda
● What is Datalog?
● Why create another Datalog engine?
● What does Dr. Lojekyll code look like?
● What design decisions did we make?
● How does Dr. Lojekyll work?
● Mini disassembler demonstration

3DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

What is Datalog?

4DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Relational, rules-based logical inference

tc(From, To) : tc(From, Hop), tc(Hop, To).

tc(From, To) : edge(From, To).

● Canonical “transitive closure” example, although doubly recursive
● The transitive closure tc of a From node is every To that is reachable

through zero or more Hop nodes

What is Datalog?

5DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Relational, rules-based logical inference

tc(From, To) : tc(From, Hop), tc(Hop, To).

tc(From, To) : edge(From, To).

● Program composed of one or more clauses, each ending with a period
● Each clause is an inference rule, telling us how to produce new facts

from existing facts

What is Datalog?

6DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Relational, rules-based logical inference

tc(From, To) : tc(From, Hop), tc(Hop, To).

tc(From, To) : edge(From, To).

● Each clause contains a head and a body, separated by a colon

What is Datalog?

7DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Relational, rules-based logical inference

tc(From, To) : tc(From, Hop), tc(Hop, To).

tc(From, To) : edge(From, To).

● Clause bodies contain a list of predicates, separated by commas
● Interpreted as a list of conjuncts, i.e. , (comma) is logical AND

What is Datalog?

8DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Relational, rules-based logical inference

tc(From, To) : tc(From, Hop), tc(Hop, To).

tc(From, To) : edge(From, To).

● Variables introduce constraints between predicates
● Sideways information passing style

○ Top-down interpretation: First use of a variable binds it to a value
○ Bottom-up interpretation: Uses by more than one predicate induce a relational JOIN

What is Datalog?

9DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Relational, rules-based logical inference

tc(From, To) : tc(From, Hop), tc(Hop, To).

● If the clause body can be satisfied, then the clause head is true
● Natural bottom-up semantics

What is Datalog?

→∃ From, Hop, To. (From, Hop) tc (Hop, To) tc⋀ (From, To) tc

10DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Why create another Datalog engine?

11DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Prior experience with distributed systems...
● DARPA Cyber Grand Challenge (CGC)

○ Goal: Automatically find and fix exploitable bugs in a number of Linux-like binaries
○ Outcome: Cyberdyne

■ Microservices coordinating over a shared message bus
■ Used Redis as a distributed database and message passing system

● Two key issues faced: change notification and orchestration
○ Individual microservices implemented local caches

■ Symptom: Got out of date with what was in Redis
■ Problem: No way for services to be notified of changes to data of interest

○ Services re-implemented pipeline blocking logic
■ Symptom: Do C when A and B have been received or become available
■ Problem: Data and logic are often related, but not co-located

Why create another Datalog engine?

https://www.petergoodman.me/docs/ieee-2018-cyberdyne.pdf

12DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

... led to idea of Datalog-based orchestration
● DARPA Assured Micro-Patching (AMP)

○ Problem: Legacy software is largely good (correct by process), but suffers some bugs
■ Need to minimally patch bugs in legacy binaries
■ Re-compilation might not be possible, or might not pass testing & evaluation process

○ Goal: Improve productivity of existing operators, i.e. there is a human in the loop
○ Requirements:

■ Decompile machine code to source code
■ Integrate source patch from newer version of software into old binary

● Datalog to orchestrate a distributed system?
○ Synchronization on messages can be expressed as a data dependency
○ Orchestration decisions should be made made off of most consistent view of the database

■ Data and logic now co-located

Why create another Datalog engine?

13DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Ideally, we want Datalog servers
● Want to support human-in-the-loop systems

● Most Datalog engines are batch systems, i.e. take their input all at once
○ bddbddb, Soufflé

● Some can support incrementality, but few support differential updates
○ Push Method

● Evolving knowledge base: what was once true might not always be true
○ Should be able to retract data, data proven true should be able to be unproven
○ differential-datalog, IncA

● Datalog servers are a bit like database servers
○ Knowledge base is streamed to the server over time, not all-at-once
○ Responds to queries using materialized views, results may change over time
○ Changes to relations of interest are published to concerned parties

■ Published messages can be used to orchestrate distributed systems

Why create another Datalog engine?

https://suif.stanford.edu/bddbddb
https://souffle-lang.github.io
https://souffle-lang.github.io
https://github.com/vmware/differential-datalog
https://github.com/szabta89/IncA

14DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Datalog engines should be...
● Incremental

○ A user should be able to introduce new axioms via arbitrary system interaction
○ When the inputs change, the results are “minimally” recomputed
○ Easiest method of implementing streaming input support is via incremental updates

● Differential
○ Users should be able to “undo” past things, i.e. remove axioms
○ Introduction of new, or removal of old axioms can trigger removal of prior inferences

■ E.g. negation (test for absence) previously satisfied, new data falsifies negation

● Sympathetic
○ Enable the programmer to communicate extralogical information to improve codegen
○ Enable the programmer to break the normal rules (e.g. stratified negation) because they

have specialized domain knowledge that the compiler does not
○ Integrate into existing codebases (e.g. using “foreign” target code types in Datalog)

Why create another Datalog engine?

15DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

What does Dr. Lojekyll code look like?

16DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

● Module
○ A given Dr. Lojekyll file

● Import
○ Of another module

● Inlined target-specific code
○ Prologue
○ Epilogue

● Types
○ Built-in types
○ Foreign types
○ Enumeration types

● Declarations
○ Exports
○ Locals
○ Queries
○ Messages
○ Functors
○ Named constants

● Clauses
○ Head
○ Body

Top-level syntax elements

What does Dr. Lojekyll code look like?

17DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Example program: transitive closure

What does Dr. Lojekyll code look like?

#message edge(u32 From, u32 To).

#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).

tc(From, To) : tc(From, Hop)
 , tc(Hop, To).

18DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Example program: transitive closure

What does Dr. Lojekyll code look like?

#message edge(u32 From, u32 To).

#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).

tc(From, To) : tc(From, Hop)
 , tc(Hop, To).

edge relation declared as a message
and used in a clause body means that
it is received by the datalog engine

19DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Example program: transitive closure

What does Dr. Lojekyll code look like?

#message edge(u32 From, u32 To).

#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).

tc(From, To) : tc(From, Hop)
 , tc(Hop, To).

tc relation declared as a query
means that it acts as an externally
visible materialized view, accessible
via a function call or RPC-like
interface

20DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Example program: transitive closure

What does Dr. Lojekyll code look like?

#message edge(u32 From, u32 To).

#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).

tc(From, To) : tc(From, Hop)
 , tc(Hop, To).

bound-attributed parameters are the
inputs to the query
(e.g. columns in a WHERE clause)

free-attributed parameters are the
outputs of the query
(e.g. columns in a SELECT clause)

21DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

What design decisions did we make?

22DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Mechanical sympathy: Functor ranges

What design decisions did we make?

● Functors are functions defined in the target code (C++ or Python) that
can be called by Datalog code

○ Functors parameters have binding attributes (bound for inputs, free for outputs)
○ Combination of all free-attributed parameters form a single tuple-structured output
○ Want to know how many outputs tuples will a functor produce
○ Want to support functors that act as accept/reject predicates, i.e. no free parameters

● @range(…) pragma helps codegen output better code for your functors
○ @range(?): Zero-or-one outputs
○ @range(.): Exactly one output
○ @range(*): Zero-or-more outputs
○ @range(+): One-or-more outputs

23DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Mechanical sympathy: Referential transparency

What design decisions did we make?

● Ideally, want to operate on values in the problem domain
○ Target language types related to problem domain can be bound to Dr. Lojekyll types with

#foreign type declarations, e.g. #foreign YOLO ```c++ std::shared_ptr<YOLO>```.
○ Problem: Is comparison for equality preserved after making copies of foreign-typed values?

● Codegen conservatively assumes that copying a foreign-typed value
does not produce an identical value

○ Solution: Ensure referential transparency via interning
○ Problem: Interning is expensive, as it requires a hash set-based deduplication

● @transparent pragma on a foreign type tells codegen that it does not
need to intern values in order to maintain referential transparency

24DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Mechanical sympathy: Clause body ordering

What design decisions did we make?

● This clause doesn’t execute in the order that you might expect

function(ObjId, Arch, OS, EA)
 : json_spec(Arch, OS, Spec)
 , json_read_object_key(Spec, "functions", FuncList)
 , json_read_list_entry(FuncList, _, FuncInfo)
 , json_read_object_key(FuncInfo, "address", IntAddress)
 , json_read_address(IntAddress, EA)
 , instruction(ObjId, InstArch, EA)
 , object_file(ObjId, _ObjArch, OS, _ObjLoadEA, _ObjPath)
 , valid_arch_transition(Arch, InstArch).

(1)

25DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Mechanical sympathy: Clause body ordering

What design decisions did we make?

● This clause uses the @barrier pragma to execute in the expected order

function(ObjId, Arch, OS, EA)
 : json_spec(Arch, OS, Spec)
 , json_read_object_key(Spec, "functions", FuncList)
 , json_read_list_entry(FuncList, _, FuncInfo)
 , json_read_object_key(FuncInfo, "address", IntAddress)
 , json_read_address(IntAddress, EA)
 , @barrier
 , instruction(ObjId, InstArch, EA)
 , object_file(ObjId, _ObjArch, OS, _ObjLoadEA, _ObjPath)
 , valid_arch_transition(Arch, InstArch).

(2)

26DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Footgun holster: Proper variable usage
● Datalog requires clause head variables to be “range restricted”

○ Every variable in a clause head must be used at least once in a clause body
○ Ensures that a value is bound to each parameter of a clause head

● Variables in clause bodies do not need to be range restricted
○ Typos (e.g. Hop vs Hopp) can lead to weaker conditions being tested

● Dr. Lojekyll requires that every named variable be used at least twice
○ Or prefix names with _ to mark them as “semantically labelled anonymous variables”

What design decisions did we make?

27DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Footgun holster: Blessing evil cross-products
● Easy to accidentally write code with a cross-product

○ Cross-products have very bad performance characteristics, producing MxN tuples
○ Often the result of an accidental typo, or fault in logic
○ When desired, a cross product must be “blessed” with the @product pragma

What design decisions did we make?

28DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

How does Dr. Lojekyll work?

29DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Dr. Lojekyll compiles Datalog into C++/Python
● Datalog → Data-flow IR → Control-flow IR → Target code

○ Data-flow IR is a graph-based IR, which models a relational data-flow graph (DFG)
■ Nodes in the DFG are called “views,” and values in the nodes are called “columns”

○ Control-flow IR is a tree-based IR, representing a procedural scheduling of the data flow IR
■ Operates on tables, indices, vectors, and variables
■ Tables map tuples to state (present, absent, unknown)
■ Contains both bottom-up and top down code

● Bottom-up: Insertion and removal
● Top-down: Discover alternate proofs for opportunistically removed tuples

○ Target code, which can be Python or C++, is generated
■ Functors can be inlined across the Datalog/C++ boundary
■ Code can be embedded via #prologue and #epilogue statements in Datalog source
■ Foreign types (e.g. std::shared_ptr<T>) can be bound to Datalog type names using

#foreign type declarations

How does Dr. Lojekyll work?

30DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Segue: Why target Python code?
● Ended up being an easy target for control-flow IR

○ Tables and indices are dictionaries, vectors are lists, etc.

● Used #epilogue statements to make Datalog self-testing
○ Prologue statements for importing dependencies
○ Epilogue statements for defining a main function and running a unit test
○ Statically type-checked with mypy
○ Output Python code, when executed, would perform a unit test

■ Helped find bugs throughout compiler

● Python code generation motivated early applications
○ Disassembly of code, which helped us figure out what types of rules worked well
○ Differential parser of Solidity code: take your evidence where you can get it

How does Dr. Lojekyll work?

31DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Back to the compiler: Data-flow IR views/nodes
● Many types of views (nearly an exhaustive list)

○ RECEIVE: Receive data from a message stream (selection in relational algebra), associated
with a #message declaration used in a clause body

○ TUPLE: Pass through data, introduce constants (selection/projection in relational algebra)
○ JOIN: Equi-join two or more views on one or more “pivots”
○ PRODUCT: Cross-product of two or more input views
○ UNION: Merge together multiple input views (set union)
○ AND-NOT/AND-NEVER: Negation (set difference)
○ MATERIALIZE/PUBLISH: Insert into a materialized view backing a #query declaration, or

publish a message associated with a #message declaration used as a clause head
○ MAP: Apply a functor to some inputs, producing additional outputs
○ PREDICATE: Filter data via a functor call that produces no outputs
○ COMPARE: Filter data via a binary inequality operator (<, >, ≠)
○ AGGREGATE: Apply an aggregating functor to summarize inputs into outputs
○ KVINDEX: Models a key/value store, where a merge functor joins old values with new ones

How does Dr. Lojekyll work?

32DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Example data-flow IR for transitive closure

How does Dr. Lojekyll work?

#message edge(u32 From, u32 To).
#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).
tc(From, To) : tc(From, Hop), tc(Hop, To).

33DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Key features of the data-flow IR
● Directed graph

○ Does not prescribe a concrete execution order
○ Edges in graph represent data sources; purple edges admit differential updates

● Multiple views can share the same backing storage
○ Nodes belong to storage equivalence classes “EQ SET <n>”
○ Two nodes in the same storage equivalence class have their data stored in the same place

● Some views require storage, while others do not
○ Views in the same storage equivalence class always share the same table (if any)
○ UNION nodes that belong to data flow cycles require storage
○ Predecessors of JOIN and PRODUCT nodes require storage
○ Target of AND-NOT/AND-NEVER nodes always require a table
○ Predecessor of MATERIALIZE nodes always require a table

● Cyclic UNIONs belong to fixpoint sets
○ Represented as “SET <n> DEPTH <k>” information
○ Equivalence class of cooperating UNIONs into fixpoint sets “SET <n>”
○ Fixpoint sets are partially ordered by logical depth “DEPTH <k>”

■ Induces a happens-before relation on fixpoint sets

How does Dr. Lojekyll work?

34DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Purpose of data-flow IR is optimization
● Optimizations are similar in spirit to “magic method” or SLDMagic

○ Operate at the algebraic level, rather than as syntactic transformations

● Constant propagation
○ Constants are propagated “upward” through the data flow graph
○ Constants reaching into a pivot of a JOIN can be pushed up, around, and down to other

predecessors of the JOIN

● Predicate pushdown
○ Can sink successors to become predecessors, thus “specializing” predecessors

● Key challenge: Maintaining control-dependencies
○ Control-dependencies are implicit, not explicit

■ Biggest form of control-dependency: upstream receipt of a message
○ Optimization can lead us to drop dependencies on predecessor nodes

■ Dependency on predecessor implies certain conditions must be satisfied, so we need to
maintain those dependencies via other mechanisms (CONDition variable nodes)

How does Dr. Lojekyll work?

35DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

How Datalog code relates to the data-flow IR

How does Dr. Lojekyll work?

#message edge(u32 From, u32 To).
#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).
tc(From, To) : tc(From, Hop), tc(Hop, To).

36DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

How Datalog code relates to the data-flow IR

How does Dr. Lojekyll work?

#message edge(u32 From, u32 To).
#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).
tc(From, To) : tc(From, Hop), tc(Hop, To).

37DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

How Datalog code relates to the data-flow IR

How does Dr. Lojekyll work?

#message edge(u32 From, u32 To).
#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).
tc(From, To) : tc(From, Hop), tc(Hop, To).

38DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

How Datalog code relates to the data-flow IR

How does Dr. Lojekyll work?

#message edge(u32 From, u32 To).
#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).
tc(From, To) : tc(From, Hop), tc(Hop, To).

39DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

How Datalog code relates to the data-flow IR

How does Dr. Lojekyll work?

#message edge(u32 From, u32 To).
#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).
tc(From, To) : tc(From, Hop), tc(Hop, To).

40DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Regaining control-flow from data-flow
● Several ways to make data-flow IR executable

○ Tuple-at-a-time execution with push method
■ Problem: recursion depth leads to stack overflow
■ Problem: removal of tuples can’t just be even deeper recursion, otherwise your

continuation might introduce an inconsistency
○ Unstructured vectorized execution, where a node’s inbox is a vector of tuples

■ Code for nodes fill inboxes of successor nodes; loop until all inboxes are empty
■ Problem: Lots of copying; Mitigation: columnar compression
■ Problem: Copying through vectors prohibits copy-propagation across nodes

● Due to design limitation: nodes can’t take values from arbitrary predecessors
○ Structured vectorized execution, where there are only vectors for pipeline blockers

■ Procedural, with control-flow structures for joins, products, and inductive loops
■ Optimizable IR, e.g. copy propagation, loop fusion, hoisting, etc.
■ Procedures for top-down alternative proof finders

How does Dr. Lojekyll work?

http://users.informatik.uni-halle.de/~brass/push/
https://event.cwi.nl/lsde/papers/hyper.pdf

41DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Excerpt of transitive closure control-flow IR
vector-define $induction_swap:17<u32,u32>
vector-define $pivots:26<u32>
induction
 fixpoint-loop testing $induction_in:16<u32,u32>
 vector-swap $induction_in:16<u32,u32>, $induction_swap:17<u32,u32>
 vector-loop {@From:21, @To:22} over $induction_swap:17<u32,u32>
 …
 vector-append {@To:22} into $pivots:26<u32>
 vector-append {@From:21} into $pivots:26<u32>
 join-tables
 vector-loop {@Hop:28} over $pivots:26<u32>
 select ... using %index:29[_,u32] where %col:7 = @Hop:28
 select ... using %index:30[u32,_] where %col:6 = @Hop:28
 change-tuple {@From:33, @To:34} ... from absent to present
 vector-append {@From:33, @To:34} into $induction_in:16<u32,u32>
 vector-clear $pivots:26<u32>

How does Dr. Lojekyll work?

(1)

42DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Excerpt of transitive closure control-flow IR
vector-define $induction_swap:17<u32,u32>
vector-define $pivots:26<u32>
induction
 fixpoint-loop testing $induction_in:16<u32,u32>
 vector-swap $induction_in:16<u32,u32>, $induction_swap:17<u32,u32>
 vector-loop {@From:21, @To:22} over $induction_swap:17<u32,u32>
 …
 vector-append {@To:22} into $pivots:26<u32>
 vector-append {@From:21} into $pivots:26<u32>
 join-tables
 vector-loop {@Hop:28} over $pivots:26<u32>
 select ... using %index:29[_,u32] where %col:7 = @Hop:28
 select ... using %index:30[u32,_] where %col:6 = @Hop:28
 change-tuple {@From:33, @To:34} ... from absent to present
 vector-append {@From:33, @To:34} into $induction_in:16<u32,u32>
 vector-clear $pivots:26<u32>

How does Dr. Lojekyll work?

(2)

Inductive loop that keeps looping so
long as the vector, induction_in:16,
contains tuples

43DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Excerpt of transitive closure control-flow IR
vector-define $induction_swap:17<u32,u32>
vector-define $pivots:26<u32>
induction
 fixpoint-loop testing $induction_in:16<u32,u32>
 vector-swap $induction_in:16<u32,u32>, $induction_swap:17<u32,u32>
 vector-loop {@From:21, @To:22} over $induction_swap:17<u32,u32>
 …
 vector-append {@To:22} into $pivots:26<u32>
 vector-append {@From:21} into $pivots:26<u32>
 join-tables
 vector-loop {@Hop:28} over $pivots:26<u32>
 select ... using %index:29[_,u32] where %col:7 = @Hop:28
 select ... using %index:30[u32,_] where %col:6 = @Hop:28
 change-tuple {@From:33, @To:34} ... from absent to present
 vector-append {@From:33, @To:34} into $induction_in:16<u32,u32>
 vector-clear $pivots:26<u32>

How does Dr. Lojekyll work?

(3)

Initially, the induction_in:16 vector
contains the inputs from the edge
message

44DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Excerpt of transitive closure control-flow IR
vector-define $induction_swap:17<u32,u32>
vector-define $pivots:26<u32>
induction
 fixpoint-loop testing $induction_in:16<u32,u32>
 vector-swap $induction_in:16<u32,u32>, $induction_swap:17<u32,u32>
 vector-loop {@From:21, @To:22} over $induction_swap:17<u32,u32>
 …
 vector-append {@To:22} into $pivots:26<u32>
 vector-append {@From:21} into $pivots:26<u32>
 join-tables
 vector-loop {@Hop:28} over $pivots:26<u32>
 select ... using %index:29[_,u32] where %col:7 = @Hop:28
 select ... using %index:30[u32,_] where %col:6 = @Hop:28
 change-tuple {@From:33, @To:34} ... from absent to present
 vector-append {@From:33, @To:34} into $induction_in:16<u32,u32>
 vector-clear $pivots:26<u32>

How does Dr. Lojekyll work?

(4)

The induction vector is swapped with
a local vector, and we loop over tuples
in the local vector

45DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Excerpt of transitive closure control-flow IR
vector-define $induction_swap:17<u32,u32>
vector-define $pivots:26<u32>
induction
 fixpoint-loop testing $induction_in:16<u32,u32>
 vector-swap $induction_in:16<u32,u32>, $induction_swap:17<u32,u32>
 vector-loop {@From:21, @To:22} over $induction_swap:17<u32,u32>
 …
 vector-append {@To:22} into $pivots:26<u32>
 vector-append {@From:21} into $pivots:26<u32>
 join-tables
 vector-loop {@Hop:28} over $pivots:26<u32>
 select ... using %index:29[_,u32] where %col:7 = @Hop:28
 select ... using %index:30[u32,_] where %col:6 = @Hop:28
 change-tuple {@From:33, @To:34} ... from absent to present
 vector-append {@From:33, @To:34} into $induction_in:16<u32,u32>
 vector-clear $pivots:26<u32>

How does Dr. Lojekyll work?

We conditionally add the To and the
From values to a “pivot vector,” which is
used to implement an equi-join

(5)

46DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Excerpt of transitive closure control-flow IR
vector-define $induction_swap:17<u32,u32>
vector-define $pivots:26<u32>
induction
 fixpoint-loop testing $induction_in:16<u32,u32>
 vector-swap $induction_in:16<u32,u32>, $induction_swap:17<u32,u32>
 vector-loop {@From:21, @To:22} over $induction_swap:17<u32,u32>
 …
 vector-append {@To:22} into $pivots:26<u32>
 vector-append {@From:21} into $pivots:26<u32>
 join-tables
 vector-loop {@Hop:28} over $pivots:26<u32>
 select ... using %index:29[_,u32] where %col:7 = @Hop:28
 select ... using %index:30[u32,_] where %col:6 = @Hop:28
 change-tuple {@From:33, @To:34} ... from absent to present
 vector-append {@From:33, @To:34} into $induction_in:16<u32,u32>
 vector-clear $pivots:26<u32>

How does Dr. Lojekyll work?

(6)

The join “blocks” on the pivot vector, i.e.
we execute the join when the pivots are
filled up by all possible predecessors

47DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Excerpt of transitive closure control-flow IR
vector-define $induction_swap:17<u32,u32>
vector-define $pivots:26<u32>
induction
 fixpoint-loop testing $induction_in:16<u32,u32>
 vector-swap $induction_in:16<u32,u32>, $induction_swap:17<u32,u32>
 vector-loop {@From:21, @To:22} over $induction_swap:17<u32,u32>
 …
 vector-append {@To:22} into $pivots:26<u32>
 vector-append {@From:21} into $pivots:26<u32>
 join-tables
 vector-loop {@Hop:28} over $pivots:26<u32>
 select ... using %index:29[_,u32] where %col:7 = @Hop:28
 select ... using %index:30[u32,_] where %col:6 = @Hop:28
 change-tuple {@From:33, @To:34} ... from absent to present
 vector-append {@From:33, @To:34} into $induction_in:16<u32,u32>
 vector-clear $pivots:26<u32>

How does Dr. Lojekyll work?

(7)

Joins map the columns from the pivot
vector into indexed columns

48DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Excerpt of transitive closure control-flow IR
vector-define $induction_swap:17<u32,u32>
vector-define $pivots:26<u32>
induction
 fixpoint-loop testing $induction_in:16<u32,u32>
 vector-swap $induction_in:16<u32,u32>, $induction_swap:17<u32,u32>
 vector-loop {@From:21, @To:22} over $induction_swap:17<u32,u32>
 …
 vector-append {@To:22} into $pivots:26<u32>
 vector-append {@From:21} into $pivots:26<u32>
 join-tables
 vector-loop {@Hop:28} over $pivots:26<u32>
 select ... using %index:29[_,u32] where %col:7 = @Hop:28
 select ... using %index:30[u32,_] where %col:6 = @Hop:28
 change-tuple {@From:33, @To:34} ... from absent to present
 vector-append {@From:33, @To:34} into $induction_in:16<u32,u32>
 vector-clear $pivots:26<u32>

How does Dr. Lojekyll work?

(8)

Add new transitions to the induction
vector, enabling more fixed point
iterations

49DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Look ma, C++

How does Dr. Lojekyll work?

50DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Mini disassembler demonstration

51DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

Mini disassembler demonstration
● Semi-realistic rules that infer

function entrypoint addresses
based off of control-flow
transitions between instructions

● Highlights incremental and
differential updates

Mini disassembler demonstration

#query function(bound u64 ToEA)

 ; The target of a function call is an instruction.
 : raw_transfer(FromEA, ToEA, CALL)
 , instruction(FromEA)
 , instruction(ToEA)

 ; Any instruction without a predecessor is a function.
 : !raw_transfer(_, ToEA, _)
 , instruction(ToEA).

#query function_instructions(bound u64 FuncEA, free u64 InstEA)

 ; The first instruction of a function is a function instruction.
 : function(FuncEA)
 , FuncEA = InstEA

 ; The fall-through of one function instruction is also a function
 ; instruction, assuming it's not a function head.
 : function_instructions(FuncEA, PredEA)
 , raw_transfer(PredEA, InstEA, FALL_THROUGH)
 , !function(InstEA).

#enum EdgeType u8.

#constant EdgeType FALL_THROUGH 0.
#constant EdgeType CALL 1.

#message instruction(u64 EA).
#message raw_transfer(u64 FromEA, u64 ToEA,
 EdgeType TransferKind).

52DARPA Assured Micro-Patching (AMP) | Dr. Lojekyll - The Mr. Hyde of Datalog Engines

