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Agenda
● What is Datalog?
● Why create another Datalog engine?
● What does Dr. Lojekyll code look like?
● What design decisions did we make?
● How does Dr. Lojekyll work?
● Mini disassembler demonstration
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What is Datalog?
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Relational, rules-based logical inference

tc(From, To) : tc(From, Hop), tc(Hop, To).

tc(From, To) : edge(From, To).

● Canonical “transitive closure” example, although doubly recursive
● The transitive closure tc of a From node is every To that is reachable 

through zero or more Hop nodes

What is Datalog?
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Relational, rules-based logical inference

tc(From, To) : tc(From, Hop), tc(Hop, To).

tc(From, To) : edge(From, To).

● Program composed of one or more clauses, each ending with a period
● Each clause is an inference rule, telling us how to produce new facts 

from existing facts

What is Datalog?
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Relational, rules-based logical inference

tc(From, To) : tc(From, Hop), tc(Hop, To).

tc(From, To) : edge(From, To).

● Each clause contains a head and a body, separated by a colon

What is Datalog?
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Relational, rules-based logical inference

tc(From, To) : tc(From, Hop), tc(Hop, To).

tc(From, To) : edge(From, To).

● Clause bodies contain a list of predicates, separated by commas
● Interpreted as a list of conjuncts, i.e. , (comma) is logical AND

What is Datalog?
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Relational, rules-based logical inference

tc(From, To) : tc(From, Hop), tc(Hop, To).

tc(From, To) : edge(From, To).

● Variables introduce constraints between predicates
● Sideways information passing style

○ Top-down interpretation: First use of a variable binds it to a value
○ Bottom-up interpretation: Uses by more than one predicate induce a relational JOIN

What is Datalog?
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Relational, rules-based logical inference

tc(From, To) : tc(From, Hop), tc(Hop, To).

● If the clause body can be satisfied, then the clause head is true
● Natural bottom-up semantics

What is Datalog?

→∃ From, Hop, To. (From, Hop)    tc (Hop, To)    tc⋀ (From, To)    tc
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Why create another Datalog engine?
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Prior experience with distributed systems...
● DARPA Cyber Grand Challenge (CGC)

○ Goal: Automatically find and fix exploitable bugs in a number of Linux-like binaries
○ Outcome: Cyberdyne

■ Microservices coordinating over a shared message bus
■ Used Redis as a distributed database and message passing system

● Two key issues faced: change notification and orchestration
○ Individual microservices implemented local caches

■ Symptom: Got out of date with what was in Redis
■ Problem: No way for services to be notified of changes to data of interest

○ Services re-implemented pipeline blocking logic
■ Symptom: Do C when A and B have been received or become available
■ Problem: Data and logic are often related, but not co-located

Why create another Datalog engine?

https://www.petergoodman.me/docs/ieee-2018-cyberdyne.pdf
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... led to idea of Datalog-based orchestration
● DARPA Assured Micro-Patching (AMP)

○ Problem: Legacy software is largely good (correct by process), but suffers some bugs
■ Need to minimally patch bugs in legacy binaries
■ Re-compilation might not be possible, or might not pass testing & evaluation process

○ Goal: Improve productivity of existing operators, i.e. there is a human in the loop
○ Requirements:

■ Decompile machine code to source code
■ Integrate source patch from newer version of software into old binary

● Datalog to orchestrate a distributed system?
○ Synchronization on messages can be expressed as a data dependency 
○ Orchestration decisions should be made made off of most consistent view of the database

■ Data and logic now co-located

Why create another Datalog engine?
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Ideally, we want Datalog servers
● Want to support human-in-the-loop systems

● Most Datalog engines are batch systems, i.e. take their input all at once
○ bddbddb, Soufflé

● Some can support incrementality, but few support differential updates
○ Push Method

● Evolving knowledge base: what was once true might not always be true
○ Should be able to retract data, data proven true should be able to be unproven
○ differential-datalog, IncA

● Datalog servers are a bit like database servers
○ Knowledge base is streamed to the server over time, not all-at-once
○ Responds to queries using materialized views, results may change over time
○ Changes to relations of interest are published to concerned parties

■ Published messages can be used to orchestrate distributed systems

Why create another Datalog engine?

https://suif.stanford.edu/bddbddb
https://souffle-lang.github.io
https://souffle-lang.github.io
https://github.com/vmware/differential-datalog
https://github.com/szabta89/IncA
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Datalog engines should be...
● Incremental

○ A user should be able to introduce new axioms via arbitrary system interaction
○ When the inputs change, the results are “minimally” recomputed
○ Easiest method of implementing streaming input support is via incremental updates

● Differential
○ Users should be able to “undo” past things, i.e. remove axioms
○ Introduction of new, or removal of old axioms can trigger removal of prior inferences

■ E.g. negation (test for absence) previously satisfied, new data falsifies negation

● Sympathetic
○ Enable the programmer to communicate extralogical information to improve codegen
○ Enable the programmer to break the normal rules (e.g. stratified negation) because they 

have specialized domain knowledge that the compiler does not
○ Integrate into existing codebases (e.g. using “foreign” target code types in Datalog)

Why create another Datalog engine?
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What does Dr. Lojekyll code look like?
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● Module
○ A given Dr. Lojekyll file

● Import
○ Of another module

● Inlined target-specific code
○ Prologue
○ Epilogue

● Types
○ Built-in types
○ Foreign types
○ Enumeration types

● Declarations
○ Exports
○ Locals
○ Queries
○ Messages
○ Functors
○ Named constants

● Clauses
○ Head
○ Body

Top-level syntax elements

What does Dr. Lojekyll code look like?
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Example program: transitive closure

What does Dr. Lojekyll code look like?

#message edge(u32 From, u32 To).

#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).

tc(From, To) : tc(From, Hop)
             , tc(Hop, To).
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Example program: transitive closure

What does Dr. Lojekyll code look like?

#message edge(u32 From, u32 To).

#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).

tc(From, To) : tc(From, Hop)
             , tc(Hop, To).

edge relation declared as a message 
and used in a clause body means that 
it is received by the datalog engine
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Example program: transitive closure

What does Dr. Lojekyll code look like?

#message edge(u32 From, u32 To).

#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).

tc(From, To) : tc(From, Hop)
             , tc(Hop, To).

tc relation declared as a query 
means that it acts as an externally 
visible materialized view, accessible 
via a function call or RPC-like 
interface
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Example program: transitive closure

What does Dr. Lojekyll code look like?

#message edge(u32 From, u32 To).

#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).

tc(From, To) : tc(From, Hop)
             , tc(Hop, To).

bound-attributed parameters are the 
inputs to the query
(e.g. columns in a WHERE clause)

free-attributed parameters are the 
outputs of the query
(e.g. columns in a SELECT clause)
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What design decisions did we make?
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Mechanical sympathy: Functor ranges

What design decisions did we make?

● Functors are functions defined in the target code (C++ or Python) that 
can be called by Datalog code

○ Functors parameters have binding attributes (bound for inputs, free for outputs)
○ Combination of all free-attributed parameters form a single tuple-structured output
○ Want to know how many outputs tuples will a functor produce
○ Want to support functors that act as accept/reject predicates, i.e. no free parameters

● @range(…) pragma helps codegen output better code for your functors
○ @range(?): Zero-or-one outputs
○ @range(.): Exactly one output
○ @range(*): Zero-or-more outputs
○ @range(+): One-or-more outputs
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Mechanical sympathy: Referential transparency

What design decisions did we make?

● Ideally, want to operate on values in the problem domain
○ Target language types related to problem domain can be bound to Dr. Lojekyll types with 

#foreign type declarations, e.g. #foreign YOLO ```c++ std::shared_ptr<YOLO>```.
○ Problem: Is comparison for equality preserved after making copies of foreign-typed values?

● Codegen conservatively assumes that copying a foreign-typed value 
does not produce an identical value

○ Solution: Ensure referential transparency via interning
○ Problem: Interning is expensive, as it requires a hash set-based deduplication

● @transparent pragma on a foreign type tells codegen that it does not 
need to intern values in order to maintain referential transparency
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Mechanical sympathy: Clause body ordering

What design decisions did we make?

● This clause doesn’t execute in the order that you might expect

function(ObjId, Arch, OS, EA)
    : json_spec(Arch, OS, Spec)
    , json_read_object_key(Spec, "functions", FuncList)
    , json_read_list_entry(FuncList, _, FuncInfo)
    , json_read_object_key(FuncInfo, "address", IntAddress)
    , json_read_address(IntAddress, EA)
    , instruction(ObjId, InstArch, EA)
    , object_file(ObjId, _ObjArch, OS, _ObjLoadEA, _ObjPath)
    , valid_arch_transition(Arch, InstArch).

(1)
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Mechanical sympathy: Clause body ordering

What design decisions did we make?

● This clause uses the @barrier pragma to execute in the expected order

function(ObjId, Arch, OS, EA)
    : json_spec(Arch, OS, Spec)
    , json_read_object_key(Spec, "functions", FuncList)
    , json_read_list_entry(FuncList, _, FuncInfo)
    , json_read_object_key(FuncInfo, "address", IntAddress)
    , json_read_address(IntAddress, EA)
    , @barrier
    , instruction(ObjId, InstArch, EA)
    , object_file(ObjId, _ObjArch, OS, _ObjLoadEA, _ObjPath)
    , valid_arch_transition(Arch, InstArch).

(2)



26DARPA Assured Micro-Patching (AMP)  |  Dr. Lojekyll - The Mr. Hyde of Datalog Engines 

Footgun holster: Proper variable usage
● Datalog requires clause head variables to be “range restricted”

○ Every variable in a clause head must be used at least once in a clause body
○ Ensures that a value is bound to each parameter of a clause head

● Variables in clause bodies do not need to be range restricted
○ Typos (e.g. Hop vs Hopp) can lead to weaker conditions being tested

● Dr. Lojekyll requires that every named variable be used at least twice
○ Or prefix names with _ to mark them as “semantically labelled anonymous variables”

What design decisions did we make?
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Footgun holster: Blessing evil cross-products
● Easy to accidentally write code with a cross-product

○ Cross-products have very bad performance characteristics, producing MxN tuples
○ Often the result of an accidental typo, or fault in logic
○ When desired, a cross product must be “blessed” with the @product pragma

What design decisions did we make?
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How does Dr. Lojekyll work?
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Dr. Lojekyll compiles Datalog into C++/Python
● Datalog → Data-flow IR → Control-flow IR → Target code

○ Data-flow IR is a graph-based IR, which models a relational data-flow graph (DFG)
■ Nodes in the DFG are called “views,” and values in the nodes are called “columns”

○ Control-flow IR is a tree-based IR, representing a procedural scheduling of the data flow IR
■ Operates on tables, indices, vectors, and variables
■ Tables map tuples to state (present, absent, unknown)
■ Contains both bottom-up and top down code

● Bottom-up: Insertion and removal
● Top-down: Discover alternate proofs for opportunistically removed tuples

○ Target code, which can be Python or C++, is generated
■ Functors can be inlined across the Datalog/C++ boundary
■ Code can be embedded via #prologue and #epilogue statements in Datalog source
■ Foreign types (e.g. std::shared_ptr<T>) can be bound to Datalog type names using 

#foreign type declarations

How does Dr. Lojekyll work?
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Segue: Why target Python code?
● Ended up being an easy target for control-flow IR

○ Tables and indices are dictionaries, vectors are lists, etc.

● Used #epilogue statements to make Datalog self-testing
○ Prologue statements for importing dependencies
○ Epilogue statements for defining a main function and running a unit test
○ Statically type-checked with mypy
○ Output Python code, when executed, would perform a unit test

■ Helped find bugs throughout compiler

● Python code generation motivated early applications
○ Disassembly of code, which helped us figure out what types of rules worked well
○ Differential parser of Solidity code: take your evidence where you can get it

How does Dr. Lojekyll work?
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Back to the compiler: Data-flow IR views/nodes
● Many types of views (nearly an exhaustive list)

○ RECEIVE: Receive data from a message stream (selection in relational algebra), associated 
with a #message declaration used in a clause body

○ TUPLE: Pass through data, introduce constants (selection/projection in relational algebra)
○ JOIN: Equi-join two or more views on one or more “pivots”
○ PRODUCT: Cross-product of two or more input views
○ UNION: Merge together multiple input views (set union)
○ AND-NOT/AND-NEVER: Negation (set difference)
○ MATERIALIZE/PUBLISH: Insert into a materialized view backing a #query declaration, or 

publish a message associated with a #message declaration used as a clause head
○ MAP: Apply a functor to some inputs, producing additional outputs
○ PREDICATE: Filter data via a functor call that produces no outputs
○ COMPARE: Filter data via a binary inequality operator (<, >, ≠)
○ AGGREGATE: Apply an aggregating functor to summarize inputs into outputs
○ KVINDEX: Models a key/value store, where a merge functor joins old values with new ones

How does Dr. Lojekyll work?
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Example data-flow IR for transitive closure

How does Dr. Lojekyll work?

#message edge(u32 From, u32 To).
#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).
tc(From, To) : tc(From, Hop), tc(Hop, To).
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Key features of the data-flow IR
● Directed graph

○ Does not prescribe a concrete execution order
○ Edges in graph represent data sources; purple edges admit differential updates

● Multiple views can share the same backing storage
○ Nodes belong to storage equivalence classes “EQ SET <n>” 
○ Two nodes in the same storage equivalence class have their data stored in the same place

●  Some views require storage, while others do not
○ Views in the same storage equivalence class always share the same table (if any)
○ UNION nodes that belong to data flow cycles require storage
○ Predecessors of JOIN and PRODUCT nodes require storage
○ Target of AND-NOT/AND-NEVER nodes always require a table
○ Predecessor of MATERIALIZE nodes always require a table

● Cyclic UNIONs belong to fixpoint sets
○ Represented as “SET <n> DEPTH <k>” information
○ Equivalence class of cooperating UNIONs into fixpoint sets “SET <n>”
○ Fixpoint sets are partially ordered by logical depth “DEPTH <k>”

■ Induces a happens-before relation on fixpoint sets

How does Dr. Lojekyll work?
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Purpose of data-flow IR is optimization
● Optimizations are similar in spirit to “magic method” or SLDMagic

○ Operate at the algebraic level, rather than as syntactic transformations

● Constant propagation
○ Constants are propagated “upward” through the data flow graph
○ Constants reaching into a pivot of a JOIN can be pushed up, around, and down to other 

predecessors of the JOIN

● Predicate pushdown
○ Can sink successors to become predecessors, thus “specializing” predecessors

● Key challenge: Maintaining control-dependencies
○ Control-dependencies are implicit, not explicit

■ Biggest form of control-dependency: upstream receipt of a message
○ Optimization can lead us to drop dependencies on predecessor nodes

■ Dependency on predecessor implies certain conditions must be satisfied, so we need to 
maintain those dependencies via other mechanisms (CONDition variable nodes)

How does Dr. Lojekyll work?
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How Datalog code relates to the data-flow IR

How does Dr. Lojekyll work?

#message edge(u32 From, u32 To).
#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).
tc(From, To) : tc(From, Hop), tc(Hop, To).
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How Datalog code relates to the data-flow IR

How does Dr. Lojekyll work?

#message edge(u32 From, u32 To).
#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).
tc(From, To) : tc(From, Hop), tc(Hop, To).



37DARPA Assured Micro-Patching (AMP)  |  Dr. Lojekyll - The Mr. Hyde of Datalog Engines 

How Datalog code relates to the data-flow IR

How does Dr. Lojekyll work?

#message edge(u32 From, u32 To).
#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).
tc(From, To) : tc(From, Hop), tc(Hop, To).
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How Datalog code relates to the data-flow IR

How does Dr. Lojekyll work?

#message edge(u32 From, u32 To).
#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).
tc(From, To) : tc(From, Hop), tc(Hop, To).



39DARPA Assured Micro-Patching (AMP)  |  Dr. Lojekyll - The Mr. Hyde of Datalog Engines 

How Datalog code relates to the data-flow IR

How does Dr. Lojekyll work?

#message edge(u32 From, u32 To).
#query tc(bound u32 From, free u32 To).

tc(From, To) : edge(From, To).
tc(From, To) : tc(From, Hop), tc(Hop, To).



40DARPA Assured Micro-Patching (AMP)  |  Dr. Lojekyll - The Mr. Hyde of Datalog Engines 

Regaining control-flow from data-flow
● Several ways to make data-flow IR executable

○ Tuple-at-a-time execution with push method
■ Problem: recursion depth leads to stack overflow
■ Problem: removal of tuples can’t just be even deeper recursion, otherwise your 

continuation might introduce an inconsistency
○ Unstructured vectorized execution, where a node’s inbox is a vector of tuples

■ Code for nodes fill inboxes of successor nodes; loop until all inboxes are empty
■ Problem: Lots of copying; Mitigation: columnar compression
■ Problem: Copying through vectors prohibits copy-propagation across nodes

● Due to design limitation: nodes can’t take values from arbitrary predecessors
○ Structured vectorized execution, where there are only vectors for pipeline blockers

■ Procedural, with control-flow structures for joins, products, and inductive loops
■ Optimizable IR, e.g. copy propagation, loop fusion, hoisting, etc.
■ Procedures for top-down alternative proof finders

How does Dr. Lojekyll work?

http://users.informatik.uni-halle.de/~brass/push/
https://event.cwi.nl/lsde/papers/hyper.pdf
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Excerpt of transitive closure control-flow IR
vector-define $induction_swap:17<u32,u32>
vector-define $pivots:26<u32>
induction
  fixpoint-loop testing $induction_in:16<u32,u32>
    vector-swap $induction_in:16<u32,u32>, $induction_swap:17<u32,u32>
    vector-loop {@From:21, @To:22} over $induction_swap:17<u32,u32>
       …
        vector-append {@To:22} into $pivots:26<u32>
        vector-append {@From:21} into $pivots:26<u32>
    join-tables
      vector-loop {@Hop:28} over $pivots:26<u32>
      select ... using %index:29[_,u32] where %col:7 = @Hop:28
      select ... using %index:30[u32,_] where %col:6 = @Hop:28
        change-tuple {@From:33, @To:34} ... from absent to present
          vector-append {@From:33, @To:34} into $induction_in:16<u32,u32>
    vector-clear $pivots:26<u32>

How does Dr. Lojekyll work?

(1)
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Excerpt of transitive closure control-flow IR
vector-define $induction_swap:17<u32,u32>
vector-define $pivots:26<u32>
induction
  fixpoint-loop testing $induction_in:16<u32,u32>
    vector-swap $induction_in:16<u32,u32>, $induction_swap:17<u32,u32>
    vector-loop {@From:21, @To:22} over $induction_swap:17<u32,u32>
       …
        vector-append {@To:22} into $pivots:26<u32>
        vector-append {@From:21} into $pivots:26<u32>
    join-tables
      vector-loop {@Hop:28} over $pivots:26<u32>
      select ... using %index:29[_,u32] where %col:7 = @Hop:28
      select ... using %index:30[u32,_] where %col:6 = @Hop:28
        change-tuple {@From:33, @To:34} ... from absent to present
          vector-append {@From:33, @To:34} into $induction_in:16<u32,u32>
    vector-clear $pivots:26<u32>

How does Dr. Lojekyll work?

(2)

Inductive loop that keeps looping so 
long as the vector, induction_in:16, 
contains tuples
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Excerpt of transitive closure control-flow IR
vector-define $induction_swap:17<u32,u32>
vector-define $pivots:26<u32>
induction
  fixpoint-loop testing $induction_in:16<u32,u32>
    vector-swap $induction_in:16<u32,u32>, $induction_swap:17<u32,u32>
    vector-loop {@From:21, @To:22} over $induction_swap:17<u32,u32>
      …
        vector-append {@To:22} into $pivots:26<u32>
        vector-append {@From:21} into $pivots:26<u32>
    join-tables
      vector-loop {@Hop:28} over $pivots:26<u32>
      select ... using %index:29[_,u32] where %col:7 = @Hop:28
      select ... using %index:30[u32,_] where %col:6 = @Hop:28
        change-tuple {@From:33, @To:34} ... from absent to present
          vector-append {@From:33, @To:34} into $induction_in:16<u32,u32>
    vector-clear $pivots:26<u32>

How does Dr. Lojekyll work?

(3)

Initially, the induction_in:16 vector 
contains the inputs from the edge 
message
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Excerpt of transitive closure control-flow IR
vector-define $induction_swap:17<u32,u32>
vector-define $pivots:26<u32>
induction
  fixpoint-loop testing $induction_in:16<u32,u32>
    vector-swap $induction_in:16<u32,u32>, $induction_swap:17<u32,u32>
    vector-loop {@From:21, @To:22} over $induction_swap:17<u32,u32>
      …
        vector-append {@To:22} into $pivots:26<u32>
        vector-append {@From:21} into $pivots:26<u32>
    join-tables
      vector-loop {@Hop:28} over $pivots:26<u32>
      select ... using %index:29[_,u32] where %col:7 = @Hop:28
      select ... using %index:30[u32,_] where %col:6 = @Hop:28
        change-tuple {@From:33, @To:34} ... from absent to present
          vector-append {@From:33, @To:34} into $induction_in:16<u32,u32>
    vector-clear $pivots:26<u32>

How does Dr. Lojekyll work?

(4)

The induction vector is swapped with 
a local vector, and we loop over tuples 
in the local vector
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Excerpt of transitive closure control-flow IR
vector-define $induction_swap:17<u32,u32>
vector-define $pivots:26<u32>
induction
  fixpoint-loop testing $induction_in:16<u32,u32>
    vector-swap $induction_in:16<u32,u32>, $induction_swap:17<u32,u32>
    vector-loop {@From:21, @To:22} over $induction_swap:17<u32,u32>
       …
        vector-append {@To:22} into $pivots:26<u32>
        vector-append {@From:21} into $pivots:26<u32>
    join-tables
      vector-loop {@Hop:28} over $pivots:26<u32>
      select ... using %index:29[_,u32] where %col:7 = @Hop:28
      select ... using %index:30[u32,_] where %col:6 = @Hop:28
        change-tuple {@From:33, @To:34} ... from absent to present
          vector-append {@From:33, @To:34} into $induction_in:16<u32,u32>
    vector-clear $pivots:26<u32>

How does Dr. Lojekyll work?

We conditionally add the To and the 
From values to a “pivot vector,” which is 
used to implement an equi-join

(5)
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Excerpt of transitive closure control-flow IR
vector-define $induction_swap:17<u32,u32>
vector-define $pivots:26<u32>
induction
  fixpoint-loop testing $induction_in:16<u32,u32>
    vector-swap $induction_in:16<u32,u32>, $induction_swap:17<u32,u32>
    vector-loop {@From:21, @To:22} over $induction_swap:17<u32,u32>
       …
        vector-append {@To:22} into $pivots:26<u32>
        vector-append {@From:21} into $pivots:26<u32>
    join-tables
      vector-loop {@Hop:28} over $pivots:26<u32>
      select ... using %index:29[_,u32] where %col:7 = @Hop:28
      select ... using %index:30[u32,_] where %col:6 = @Hop:28
        change-tuple {@From:33, @To:34} ... from absent to present
          vector-append {@From:33, @To:34} into $induction_in:16<u32,u32>
    vector-clear $pivots:26<u32>

How does Dr. Lojekyll work?

(6)

The join “blocks” on the pivot vector, i.e. 
we execute the join when the pivots are 
filled up by all possible predecessors
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Excerpt of transitive closure control-flow IR
vector-define $induction_swap:17<u32,u32>
vector-define $pivots:26<u32>
induction
  fixpoint-loop testing $induction_in:16<u32,u32>
    vector-swap $induction_in:16<u32,u32>, $induction_swap:17<u32,u32>
    vector-loop {@From:21, @To:22} over $induction_swap:17<u32,u32>
       …
        vector-append {@To:22} into $pivots:26<u32>
        vector-append {@From:21} into $pivots:26<u32>
    join-tables
      vector-loop {@Hop:28} over $pivots:26<u32>
      select ... using %index:29[_,u32] where %col:7 = @Hop:28
      select ... using %index:30[u32,_] where %col:6 = @Hop:28
        change-tuple {@From:33, @To:34} ... from absent to present
          vector-append {@From:33, @To:34} into $induction_in:16<u32,u32>
    vector-clear $pivots:26<u32>

How does Dr. Lojekyll work?

(7)

Joins map the columns from the pivot 
vector into indexed columns
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Excerpt of transitive closure control-flow IR
vector-define $induction_swap:17<u32,u32>
vector-define $pivots:26<u32>
induction
  fixpoint-loop testing $induction_in:16<u32,u32>
    vector-swap $induction_in:16<u32,u32>, $induction_swap:17<u32,u32>
    vector-loop {@From:21, @To:22} over $induction_swap:17<u32,u32>
      …
        vector-append {@To:22} into $pivots:26<u32>
        vector-append {@From:21} into $pivots:26<u32>
    join-tables
      vector-loop {@Hop:28} over $pivots:26<u32>
      select ... using %index:29[_,u32] where %col:7 = @Hop:28
      select ... using %index:30[u32,_] where %col:6 = @Hop:28
        change-tuple {@From:33, @To:34} ... from absent to present
          vector-append {@From:33, @To:34} into $induction_in:16<u32,u32>
    vector-clear $pivots:26<u32>

How does Dr. Lojekyll work?

(8)

Add new transitions to the induction 
vector, enabling more fixed point 
iterations
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Look ma, C++

How does Dr. Lojekyll work?
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Mini disassembler demonstration
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Mini disassembler demonstration
● Semi-realistic rules that infer 

function entrypoint addresses 
based off of control-flow 
transitions between instructions

● Highlights incremental and 
differential updates

Mini disassembler demonstration

#query function(bound u64 ToEA)

    ; The target of a function call is an instruction.
    : raw_transfer(FromEA, ToEA, CALL)
    , instruction(FromEA)
    , instruction(ToEA)

    ; Any instruction without a predecessor is a function.
    : !raw_transfer(_, ToEA, _)
    , instruction(ToEA).

#query function_instructions(bound u64 FuncEA, free u64 InstEA)

    ; The first instruction of a function is a function instruction.
    : function(FuncEA)
    , FuncEA = InstEA

    ; The fall-through of one function instruction is also a function
    ; instruction, assuming it's not a function head.
    : function_instructions(FuncEA, PredEA)
    , raw_transfer(PredEA, InstEA, FALL_THROUGH)
    , !function(InstEA).

#enum EdgeType u8.

#constant EdgeType FALL_THROUGH 0.
#constant EdgeType CALL 1.

#message instruction(u64 EA).
#message raw_transfer(u64 FromEA, u64 ToEA,
                      EdgeType TransferKind).
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