TRA)L
pITO

875

DeepState: Bringing
vulnerability detection
tools into the
development lifecycle

Peter Coodman (Trail of Bits)
Gustavo Grieco (Trail of Bits)
Alex Groce (Northern Arizona University)

Introductions

;ﬁg‘m ul’nm'sf |

"("?ls\gnﬁu 3

Peter Goodman Gustavo Grieco Alex Groce
Senior Security Engineer Security Engineer Associate Professor

peter@trailofbits.com gustavo.grieco@trailofbits.com alex.groce@nau.edu
Trail of Bits Trail of Bits Northern Arizona University

Trail of Bits | IEEE SecDev 20

) e . ° . TRA)L
Today’s workshop is interactive (1) s

Before beginning, please do one of the following in a terminal
on your computers:

Clone the ieee _secdev 2018 branch:

git clone https://github.com/trailofbits/deepstate -b ieee_secdev_2018

OR

Download and extract:

https://github.com/trailofbits/deepstate/archive/ieee secdev 2018.zip

IEEE SecDev 2018 30.09.2018 3

https://github.com/trailofbits/deepstate
https://github.com/trailofbits/deepstate/archive/ieee_secdev_2018.zip

) e ° . TRA/L
Today’s workshop is interactive (2) B

Go into the cloned/unzipped deepstate directory, and execute
the following:

$ vagrant up
$ vagrant ssh

If successful, this is what you should see:

$

How do developers test code?

e Static Analysis

e Many tools available, most are commercial (e.g. Coverity)
e False positives continue to be a vexing problem
e 57/% have never used one (JetBrains Survey)

e Unit Tests!

e Toolingis free

e Test for functionality and security

e Nearly everyone is familiar with the concepts

e Only 29% do not use unit tests (JetBrains Survey)

Trail of Bits | |EEE SecDev 20

TRA)L

B
[

e

. . . TRA)L
Unit testing is great! Blts

e Unit tests are a software assurance methodology

e Typically test individual functions, classes, or groups of related
functionality

e As code changes (e.g. improving an algorithm), unit tests help to
ensure that expected functionality or results remain the same

Let’s write a unit test (1) "B

Enter the exercises directory and open FirstTest.cpp

$ cd exercises
$ nano FirstTest.cpp

Let’s write a unit test (2) s

Here is what you will see inside of FirstTest.cpp

#include <deepstate/DeepState.hpp>

uintl6é_t Pow2(uintl6_t x) {
return x * Xx;

}

TEST(Math, PowersOfTwo) {
ASSERT_EQ(Pow2(0), 0); // 072 =
ASSERT_NE (Pow2(2), 3); // 272 !

0
3
// Try some for yourself!

}

) . . TRA)L
Let’s write a unit test (3) Bl

Here is what you will see inside of FirstTest.cpp

#include <deepstate/DeepState.hpp>

uintl6é_t Pow2(uintl6_t x) {

return x * Xx;
} \
TEST(Math, PowersOfTwo) {
ASSERT_EQ(Pow2(0), 0); // 042 = Function that we want
ASSERT_NE (Pow2(2), 3); // 272 ! to test

0]
3

// Try some for yourself!

}

Let’s write a unit test

(4)

Here is what you will see inside of FirstTest.cpp

#include <deepstate/DeepState.hpp>

uintl6é_t Pow2(uintl6_t x) {
return x * Xx;

}

TEST(Math, PowersOfTwo) {
ASSERT_EQ(Pow2(0), 0); // 072 =
ASSERT_NE (Pow2(2), 3); // 272 !

// Try some for yourself!

}

0]
3

TRA)L

B'7S

Test case

10

) . . TRA)L
Let’s write a unit test (5) "B

Here is what you will see inside of FirstTest.cpp

#include <deepstate/DeepState.hpp>

uintl6é_t Pow2(uintl6_t x) {
return x * Xx;

}
TEST|(Math, PowersOfTwo)
AlLEW—EQ‘(‘PWﬂT(‘ﬁ—@‘)J_ > s /] OTr—==Q
ASSERT_NE (Pow2(2), 3); // 272 != 3 Test Easte name and
est name
// Try some for yourself!

}

Let’s write a unit test

(6) s

Here is what you will see inside of FirstTest.cpp

#include <deepstate/DeepState.hpp>

uintl6é_t Pow2(uintl6_t x) {
return x * Xx;

}
TEST (Math, PowersOfTwo) {

ASSERT_EQ(Pow2(0), 0); // 072 == 0
ASSERT_NE(Pow2(2), 3); // 272 != 3

[~

// Try some for yourself!

}

Assertions verifying
output is as expected

) . . TRA)L
Let’s write a unit test (7) "%

Here is what you will see inside of FirstTest.cpp

#include <deepstate/DeepState.hpp>

uintl6é_t Pow2(uintl6_t x) {
return x * Xx;

}

TEST(Math, PowersOfTwo) {
ASSERT_EQ(Pow2(0), 0); // 072 =
ASSERT_NE (Pow2(2), 3); // 272 !

0]
3 Homework!!!

I// Try some for yourself!

}

Executing your first test (1) "B

Please save and close FirstTest.cpp, and execute the
following command:

$ make exercise_1

Now, execute the following:
$./FirstTest

Executing your first test (2) s

Here is what you should see:

$./FirstTest

INFO: Running: Math_PowersOfTwo from FirstTest.cpp(7)
INFO: Passed: Math_PowersOfTwo

Our tests passed! This function must be correct, right?

TRAL
Back to our test (1) s

#include <deepstate/DeepState.hpp>

uintl6é_t Pow2(uintl6_t x) {
return x * Xx;

}
TEST(Math, PowersOfTwo) {

ASSERT_EQ(Pow2(0), 0); // 0A2 == 0
ASSERT_NE(Pow2(2), 3); // 2A2 1= 3 A~ N
// Try some for yourself! What does [O 0 |

| ASSERT_EQ(Pow2 (65535) , 4294836225) ; this do? \ s

}

Back to our test

Let’s diagnose it!

ul We asked if this was true:
} 65535 x 65535 = 4294836225

We can express this in hexadecimal as:
OXFFFF * OXFFFF = OXFFFE_0001

;{And only the 0x0001 fitsinto a uintl6_t

TRAIL
Back to our test (3) s

#include <deepstate/DeepState.hpp>

uintl6é_t Pow2(uintl6_t x) {
return x * Xx;

}

TEST(Math, PowersOfTwo) {
ASSERT_EQ(Pow2(0), 0); // 072 =

0
ASSERT_NE (Pow2(2), 3); // 272 != 3

// Try some for yourself!

“correct”
| ASSERT_EQ(Pow2(65535), 1); |4/
}

TRAL
Back to our test (4) "B

Here is what you will see inside of FirstTest.cpp

#include <deepstate/DeepState.hpp>

uint32_t

TEST(Math, PowersOfTwo)
ASSERT_EQ(Pow2(0), 0);

ASSERT_NE (Pow2(2), 3); // 2°

// Try some for yourself!

ASSERT_EQ(Pow2(65535),|4294836225),

Trail of Bits IEEE SecDev 2018 30.09.2018 19

Unit testing is great... right?

e Unit tests help you to...
e Find bugs in your code
e Experimentally verify your code on some set of inputs

e Verify that the behavior of some code on some set of inputs stays
consistent over time and across changes

e But, unit tests are not a panacea

e |[tisuptoYOU, the tester, to understand and test the boundary
conditions, and test for them

e Thisis harder for more complex code

TRA)L

B
[

e

20

) o . TRA
Can’t wejust automate it? Blts

e Ideally, we'd like something to figure out the best set of
inputs for a given test so we don’t have to (thinkso hard)

e Spoiler alert! DeepState is that system
e Thisis a “solved” problem
e Symbolic execution (e.g. KLEE, Manticore, Angr, S2E, etc.)

e Fuzzers(e.g. libFuzzer, AFL, Dr. Fuzz, Radamsa, zzuf, Peach, etc.)

e Developers don’'t use existing solutions because they
don't fit nicely into their existing workflow!

2

Developers don’t use security testing tools

e Zero* developers use symbolic executors

e Hardtolearn and use
e Difficult to integrate into a build/test cycle
e (Confusing and easily crash/run forever/eat up memory

e Nearly zero* developers use fuzzers
e Requires custom harnesses and build system changes
e Security tools are built for bug hunters

e Work great for auditors, CTF contests, reverse engineers
e (Confusing and alien for software developers

ts IEEE SecDev 20

TRA)L

B
[

e

/A

TBAIL
B'TS

Developers do use unit testing

e DeepState integrates symbolic testing and fuzz testing
into a Google Test-like unit testing framework

e Fits into existing developer workflow
e FEasily integrates with existing code base and build system
e Fasytolearn and use, especially if you are familiar with Google Test

e Improves software quality

e Also tests for correctness, not just security
e No false positives!

23

. . TRAL
Integrating DeepState Is easy BY7s
DeepState.hpp libdeepstate.a / \
#define TEST(... DeepState_ Assume: (t1§§
#define TEST F(... aarn MANTICORE
H d #define ASSUME(... DeepState_Pass: ’
#defi EXPECT (... P
¢ eaaer §dafina ASSERT(... DeepState_SoftFail: ﬁ%
. #define LOG(... et ‘
e Library pecpstate__—— s
o Test w =
Ca S e S Tests.cpp Tests.o Tests
E t #include <DeepState Unit_Namel Test: (1)(1)(1)8(1)3(1)
11
. XeCU O r TEST(Unit, Namel) ({ De:;State_Int 0010101
symbolic_int x; cmp eax, 0 0110101
ASSUME (x > 0) ; ig .LO ‘ 0100101
iae call DeepState .. 0101010
} .LO: 1010101
S 0101010
\ 0101010 /
Trail of Bits | IEEE SecDev2018 | 30.09.20124

TRA)L

Writing unit tests with DeepState Bl

e TEST, TEST_F

e TEST(UnitName, CaseName) creates anew test
e TEST_Fislike TEST but with a class that performs setup and teardown

e ASSERT, CHECK

e ASSERT logs and error and stops execution if a condition fails
e CHECK s like ASSERT but logs an error and continues execution

e Examples:
e ASSERT(poly != vy * z); ASSERT_NE(poly, vy * z);

ts |[EEE SecDev 201¢ 30.09.20 25

I‘?A/i.
B'TS

Monitoring test progress in DeepState

e Logging in unit tests is valuable for monitoring progress,
debugging unusual outcomes

e Examples:
o LOG(WARNING) << “hello” << “world!”;

o ASSERT (true) << “Never printed because true is true”;
o ASSERT(false) << “Always printed, test stops”;

o CHECK(false) << “Always printed, test marked as ”
<< “failing but continues?”;

TBAIL
B TO

rJ

Creating “symbolic values” with DeepState

e Symbolic data types

e (Convenient typedefs: symbolic_int, symbolic_char, ...
e Explicit form: Symbolic<int>, Symbolic<std::string>, ..
e Constraining symbolic values

e ASSUME, ASSUME_*x macros add constraints onto symbolic values, e.g.
ensuring a value falls within a range

e Examples:

e symbolic_unsigned x, vy, Zz;
e ASSUME_GT(x, 0); ASSUME_GT(y, 1); ASSUME_GT(z, 1);

IEEE SecDev 201¢ 30.09.20 i)

Discovering the original bug with DeepState (1) "#

Here is what FirstTest.cpp looked like before our fix:

#include <deepstate/DeepState.hpp>

uintl6é_t Pow2(uintl6_t x) {
return x * Xx;

}

TEST(Math, PowersOfTwo) {
ASSERT_EQ(Pow2(0), 0); // 072 =
ASSERT_NE (Pow2(2), 3); // 272 !

0]
3

// Try some for yourself!

Discovering the original bug with DeepState (2) "%

Here is how to use DeepState to discover the bug:

#include <deepstate/DeepState.hpp>
using namespace deepstate;

uintl6é_t Pow2(uintl6_t x) {
return x * Xx;

}

TEST(Math, PowersOfTwo) {
ASSERT_EQ(Pow2(0), 0); // 022 == 0

Symbolic<uintl6_t> x;

ASSUME_NE(x, 0);

ASSERT_EQ(Pow2(x) / x, x) // forall x. (x"2)/x == x
<< "Pow2 ("™ << x << M) /M K< x << M = "< ox;

Discovering the original bug with DeepState (3) "#

$ deepstate-angr ./FirstTest

Running Math_PowersOfTwo from FirstTest.cpp(7)

FirstTest.cpp(11l): Checked condition

FirstTest.cpp(12): Pow2(258) / 258 != 258

Failed: Math_PowersOfTwo

Input: 01 02

Saving input to out/FirstTest.cpp/Math_PowersOfTwo/0cb988d042a7f28dd5fe2b55b3f5ac7a.fail
Running Math_PowersOfTwo from FirstTest.cpp(7)

FirstTest.cpp(1ll): Checked condition

FirstTest.cpp(12): Pow2(256) / 256 != 256

Failed: Math_PowersOfTwo

Input: 01 00

Saving input to out/FirstTest.cpp/Math_PowersOfTwo/25daad3d9e60b45043a70c4ab7d3blc6.fail

IEEE SecDev 207¢ 30.09.2018 30

How did it do that? (1) "B

/x=symbo|ic()/

A 4

continue abandon

(FTTTTTTTEEEEEEEEA

How did it do that? (2) s

(e em e e -
/ X = SymbO“C() / ... IRGRLLLLLLLELLELLEE > VALUE * BITVEC16
1
i
i
!
i
1
i
1
i
1
v i
I
continue abandon I All 2716 possible values
I
YEE = BN B B BN BN BN BN BN BN BN BN BN BN BN BN BN B .

How did it do that?

r ------------------- ‘

/ X = SymbO“C() /l > VALUE « BITVEC16 |
I l

............................... i" --....................... I

--_'_',': I. 1

r k3 - - S I S EE O . r - - - A ----- ‘

| | |

| | |

| | |

| | 1

| | 1

| | 1

v | | |

| | |

] | | 1
continue abandon " ' :
‘_ --------- A = BN BN BN BN BN BN BN =B ',

|EEE 33

How did it do that? (4) "B

vy E—

Fo==EEEEEEEEEEEEEEEA

. RRRRRRLIIILILLLLLE > VALUE « BITVEC16 1

I l

_____ I 1

“,,_._._....-.-.-::::: i s U 1 1
'."‘q,\ r - - = - - == . -r - [- - . =} -‘
: VALUE == : VALUE != 0 :

| | i

| | i

| | i

| | i

v | | |

| | i

continue abandon ' ; '
i 0 1 {All} -0 |

Exercise 1.1 (1) 8%

Enter the exercises directory and open LongLongOver.cpp

$ cd exercises
$ nano LongLongOver.cpp

To compile it, execute the following command:

$ make exercise_ 1.1

RH]

Exercise 1.1 (1) "B

Write a symbolic unit test for overflow_11_add for non
negatives x and vy:

1. overflow_11_add(x,y)==0 = x+y does not overflow
2. overflow_11_add(x,y)==1 = x+y overflows

Write a DeepState test for (1) and test it. Then, write a
DeepState test for (2) and test it.

36

Exercise 1.1 (2) s

#include <deepstate/DeepState.hpp>
using namespace deepstate;

TEST (Math, NoOverflowAdd) {
Symbolic<long long> x, vy;
// Fill me in!!!

// Fill me in!!!
// Fill me in!!!
// Fill me in!!!
// Fill me in!!!

a

Exercise 1.1 (3) "B

#include <deepstate/DeepState.hpp>
using namespace deepstate;

TEST (Math, NoOverflowAdd) {
Symbolic<long long> x, vy;
Your goals:

//
/]
/]
/]
/]

1)
2)

x and y should be non-negative

if overflow_11_add of x and y doesn’t overflow,
then verify that the result of the addition, z,
is greater than or equal to each of x and y

a8

Exercise1.1

#include <deepstate/DeepState.hpp>
using namespace deepstate;

TEST(Math, NoOverflowAdd) {
Symbolic<long long> x, Vy;

ASSUME_GE(x, 0)3
ASSUME_GE(y, 0)3
ASSUME_EQ(overflow_11_add(x, y), 0)3

long long z = x + y;

ASSERT(z >= x && z >= y)3
}

(4)

TRA

ke

39

Exercise1.1

#include <deepstate/DeepState.hpp>
using namespace deepstate;

TEST(Math, OverflowAdd) {
Symbolic<long long> x, Vy;

ASSUME_GE(x, 0)3
ASSUME_GE(y, 0)3
ASSUME_EQ(overflow_11_add(x, y), 1)3

long long z = x + y;

ASSERT(z < x || z < y);
}

(4)

TRA

ke

40

TRA

Exercise 1.1 (5) "8

Running Math_NoOverflowAdd from LonglLongOver.cpp(134)

Input: 00 00 OO0 00 OO OO 0O 01 OO GO OO OO 0O 00 00 7f
Running Math_NoOverflowAdd from LonglLongOver.cpp(134)

Passed: Math_OverflowAdd

Input: 00 00 00 OO0 OO0 OO 00 OO OO OO OO0 OO0 OO OO 6O 00

Saving input to
out/LonglLongOver.cpp/Math_NoOverflowAdd/4ae71336e44bfobf79d2752e234818a5.pass
Running Math_NoOverflowAdd from LonglLongOver.cpp(134)

Passed: Math_OverflowAdd

Input: 00 00 00 OO OO OO OO0 OO OO OO OO0 0O OO OO 60 01

Saving 1input to
out/LonglLongOver.cpp/Math_NoOverflowAdd/cf404dc806178c245b5b4fe2531e6d8c.pass

4]

Exercise 1.1 (6) s

Running Math_OverflowAdd from LonglLongOver.cpp(150)
LonglLongOver.cpp(154): Checked condition

LongLongOver.cpp(155): Checked condition

LonglLongOver.cpp(156): Checked condition £
LonglLongOver.cpp(161): Checked condition \ﬁvr1 2 ‘
Failed: Math_OverflowAdd <— y:
Input: 00 00 00 00 00 0O 0O 01 00 0O 0O 00 00 00 00 7f

Saving 1input to k
out/LonglLongOver.cpp/Math_OverflowAdd/1288b4cdc66d265fd60d3b52172ba717.fail o

Trail of Bits IEEE SecDev 2018 30.09.2018 42

Exercise1.1

#include <deepstate/DeepState.hpp>
using namespace deepstate;

T

}

EST(Math, OverflowAdd) {
Symbolic<long long> x, Vy;

ASSUME_GE(x, 0)3
ASSUME_GE(y, 0)3
ASSUME_EQ(overflow_11_add(x, y), 1)3

long long z = x + y; <

ASSERT(z < x || z < y);

TRA

(7) "%

S

_>
undefined ((c-f’\

behavior

N ———

43

Exercise1.1

#include <deepstate/DeepState.hpp>
using namespace deepstate;

TEST(Math, OverflowAdd) {
Symbolic<long long> x, Vy;

ASSUME_GE(x, 0)3
ASSUME_GE(y, 0)3
ASSUME_EQ(overflow_11_add(x, y), 1);

Ivolatile long long z = x + y;I

ASSERT(z < x || z < y);
}

(8)

T

»

glte

N

Exercise 1.1 (9)

Running Math_OverflowAdd from LonglLongOver.cpp(150)

LonglLongOver.cpp(154): Checked condition

LonglLongOver.cpp(155): Checked condition

LongLongOver.cpp(156): Checked condition

Passed: Math_OverflowAdd

Input: 00 0O OO0 0O OO OO 0O 01 OO GO OO 0O 0O 00 00 7f

Saving input to
out/LonglLongOver.cpp/Math_OverflowAdd/1288b4cdc66d265fd60d3b52172ba717.pass

TRA

ke

45

Exercise 2 (1) "B

For the next example, execute the following command:

S make exercise 2

Now, execute the following:
$./Wallet

4B

Exercise 2 (2) s

Here is what you should see:

$./Wallet

Usage: ./Wallet <initial_balance> W|D <amount> [W|D <amount> [...]]

41

Wallet.hpp implementation

class Wallet;

struct Cheque {
unsigned amount;
Wallet *dest;

}s

class Wallet {
public:
Wallet(void)
: balance(0) {}

explicit Wallet(unsigned 1dinitial_balance)
: balance(initial_balance) {}

void Deposit(unsigned amount) {
balance += amount;

}

private:
unsigned balance;

Trail of Bits

IEEE SecDev 2018

4B

Wallet.hpp implementation

unsigned Balance(void) const {
return balance;

}

bool Withdraw(unsigned amount) {
if (amount <= balance) {

balance -= amount;
return true;
} else {

return false;
}
}

bool Transfer (Cheque cheque) {
if (Withdraw(cheque.amount)) {
cheque.dest->Deposit(cheque.amount) ;
return true;
} else {
return false;
}
}

Trail of Bits

IEEE SecDev 2018

43

Wallet.hpp implementation

(3)

TRAL

B'7S

bool MultiTransfer(const std::vector<Cheque> &cheques) {

LOG (DEBUG)
<< "Processing " << cheques.size() << " cheques";

unsigned total_to_withdraw = 0;
for (auto cheque : cheques) {
total_to_withdraw += cheque.amount;

3

if (balance < total_to_withdraw) {
LOG (WARNING)
<< "Insufficient funds! Can't transfer " << total_to_withdraw
<< " from account with balance of " << balance;
return false;

}

LOG (DEBUG)
<< "Withdrawing " << total_to_withdraw << " from account";

for (auto cheque : cheques) {
ASSERT (Transfer (cheque))
<< "Insufficient funds! Can't transfer " << cheque.amount
<< " from account with balance of " << balance;

3

return true;

"Bk

Exercise 2: Testing Wallet.hpp

Write DeepState test cases to test the functionality of Wallet:

A valid withdrawal decreases the account balance

A failed withdrawal preserves the account balance

A self-transfer preserves the account balance

A multi transfer preserves the total balance between two
accounts.

HWN =

Write DeepState tests for 1, 2, and 3 and execute them with
deepstate-angr. Then, write a DeepState test for 4 and
execute it as well.

al

Wallet_tests.cpp test fixture

class WalletTests : public deepstate::Test {
public:
WalletTests(void)
accountl(initial_balancel),
account2(initial_balance2) {}

uint32_t InitialBalance(void) const {
return initial_balancel + initial_balance2;

}

uint32_t TotalBalance(void) const {
return accountl.Balance() + account2.Balance();

}
protected:

symbolic_unsigned initial_balancel;
symbolic_unsigned initial_balance2;

Wallet accountl;
Wallet account2;

symbolic_unsigned amountl;
symbolic_unsigned amount2;

}s

of Bits

IEEE SecDev 2018

o)

a2

Wallet tests using the WalletTest fixture

TEST_F(WalletTests,
// Fill me din!!!
+

TEST_F(WalletTests,
// Fill me din!!!
+

TEST_F(WalletTests,
// Fill me din!!!
+

TEST_F(WalletTests,
// Fill me din!!!
+

WithdrawalDecreasesAccountBalance) {

FailedwWithdrawalPreservesAccountBalance) {

SelfTransferPreservesAccountBalance) {

MultiTransferPreservesBankBalance) {

of Bits

IEEE SecDev 2018

a3

Withdrawal and transfer properties (1) s

TEST_F(WalletTests, WithdrawalDecreasesAccountBalance) {
ASSUME_GT (amountl, 0);
ASSUME (accountl.Withdraw(amountl));
ASSERT_LT (accountl.Balance(), 1initial_balancel);

}

TEST_F(WalletTests, FailedWithdrawalPreservesAccountBalance) {

} -

TEST_F(WalletTests, SelfTransferPreservesAccountBalance) {

} -

of Bits IEEE SecDev 2018 30.09.2018 9%

Withdrawal and transfer properties

TEST_F(WalletTests, WithdrawalDecreasesAccountBalance) {
ASSUME_GT (amountl, 0);
ASSUME (accountl.Withdraw(amountl));
ASSERT_LT (accountl.Balance(), 1initial_balancel);

}

TEST_F(WalletTests, FailedWithdrawalPreservesAccountBalance) {
ASSUME (!accountl.Withdraw(amountl));

ASSERT_EQ(accountl.Balance(), 1initial_balancel);
+

TEST_F(WalletTests, SelfTransferPreservesAccountBalance) {

}

of Bits

IEEE SecDev 2018

TRAL

B'TS

N

HH]

Withdrawal and transfer properties

TEST_F(WalletTests, WithdrawalDecreasesAccountBalance) {
ASSUME_GT (amountl, 0);
ASSUME (accountl.Withdraw(amountl));
ASSERT_LT (accountl.Balance(), 1initial_balancel);

}

TEST_F(WalletTests, FailedWithdrawalPreservesAccountBalance) {
ASSUME (!accountl.Withdraw(amountl));
ASSERT_EQ(accountl.Balance(), 1initial_balancel);

+

TEST_F(WalletTests, SelfTransferPreservesAccountBalance) {
(void) accountl.Transfer ({amountl, &accountl});

ASSERT_EQ(accountl.Balance(), 1initial_balancel)
<< "Accountl's balance has changed with a self transfer of "
<< amountl;

of Bits

(3

IEEE SecDev 201¢

TRApL
) BT

a6

Multi-transfer property

TEST_F(WalletTests, MultiTransferPreservesBankBalance) {
const auto old_balancel = accountl.Balance();
const auto old_balance2 = account2.Balance();

const auto transfer_succeeded = accountl.MultiTransfer ({
{amountl, &account2},
{amount2, &account2},

1)

if (!transfer_succeeded) {
CHECK(old_balancel == accountl.Balance())
<< "Accountl's balance has changed from "
<< old_balancel << " to " << accountl.Balance();

CHECK(old_balance2 == account2.Balance())
<< "Account2's balance has changed from "
<< old_balance2 << " to " << account2.Balance();

} else {
CHECK(InitialBalance() == TotalBalance())
<< "Balance in bank has changed from "
<< InitialBalance() << " to " << TotalBalance();

of Bits

IEEE SecDev 2018

o)

al

End of part 1

Welcome back

TRAIL
B'TS

TRA)L
Summary of part1 Blts

e Unit testing is great, but making good unit tests is hard

e [asyto write tests
e Just as easy to miss corner cases

e DeepState turns unit testing into proving

e Instead of writing tests with specific inputs to test, use symbolic
variables/values to test for all inputs

60

TRA)L

Overview of part 2 Blts

e The leaky abstraction: symbolic executions tactics
e Helping to mitigate the “path explosion” problem
e When one approach fails, try, try, try again

e \Wesaw deepstate-angr, but there's more than just that

e Other input-finding backends: Manticore, AFL, libFuzzer, Dr. Fuzz, S2E

e Time to get real

e Testing file system durability: is filesystem metadata consistent in the
face of arbitrary shutdowns?

61

: . TRAL
Sometimes abstractions leak through (1) "

e Symbolic execution is a powerful program analysis
technique

e Explores all feasible paths through a program, but what does this
mean, really?

e |f execution reaches an 1 f statement, then a symbolic executor will try
to discover (e.g. via a SMT theorem prover) inputs that drive execution

down both paths

e Anytime a symbolic executor is faced with more than one possible
paths to explore, it chooses to explore all of them (e.g. via enqueuing
them)

. . TRAL
Sometimes abstractions leak through (2) "%

What if we have an for loop with a symbolic upper bound?

TEST(PathExplosion, GoesBoom) {
symbolic_int max_1;
for (int i = 03 i < max_ij; ++1) {
/] A
}
// B

. . TRA)L
Sometimes abstractions leak through (3) ‘#ls

max_1

n

I
(O}

symbolic()

TEST (PathExplosion, GoesBoom) {
symbolic_int max_1i;
for (int 1 = 0; 1 < max_1i; ++1) {

/] A

. . TRAL
Sometimes abstractions leak through (4) "%

e Symbolic upper bounds to loops can cause unbounded
forking

e FEveryiteration will cause the symbolic executor to explore both paths

e Imagine if there was a nested loop, or an if statement in the loop
e These constructs are common in real code

e Need a way to mitigate the path explosion

e Solution: sacrifice some generality to get performance by “pre-forking”
and unrolling the loops in each fork

Sometimes abstractions leak through (5) "B

With the “pumping” tactic of gener

TEST(PathExplosion, DoesntGoBoom) {
symbolic_int sym_max_1i;
for (int i = 0, max_i = Pump(sym_max_1i);
1 < max_i; ++1) {

/] A \
} Not symbolic!

// B
} Trall of Bits | IEEE SecDev2018 | 30002018 B8

Sometimes abstractions leak through

TEST (PathExplosion, DoesntGoBoom) {

symbolic_int sym_max_i;
for (int i = 0, max_1i =
i < max_i; ++1i) {

/] A

/] B
}

Pump (sym_max_1i) ;

Jd
: Creates multiple forks, where in each fork,
1= 0 _ sym_max_1 is concretized to its next
sym_max_i = symbolic() smallest value, and that value is returned
max_i = Pump(sym_max_i)
|
] Y v L] v
max_i = 0 max_i = 1 max_1 2 max_1 3 max_1 4
v Y Y
B A A
v v
B A
v
B

W > € > | > |

Trail of Bits

IEEE SecDev 2018

- > € > € > > |

30.09.2018

67

Sometimes abstractions leak through (7) "B

e Pumping is one way to mitigate path explosion in
symbolic execution

e Perhaps a better name would be “MinPump” or “MinValues”

e Arbitrary policies are possible, e.g. MaxPump, MinMaxPump, etc.
e Idiom exists to improve scalability of symbolic execution
e Usage of this idiom tends toward concretizing loop upper bounds

e Thisis a useful semantic to “attach onto” for test case reduction

e But what if none of these idioms “solve” path explosion?

68

But what if we can’t mitigate path explosion? (1) "%

e Sometimes we can't easily mitigate path explosion with
idioms/tactics like Pump

e No fear, libFuzzer is herel

e DeepState supports multiple input-generation backends
e Manticore, Angr, AFL, libFuzzer, AFL, Dr. Fuzz, and S2E

e [f one doesn't work or is too slow, try another!

But what if we can’t mitigate path explosion?(2) "#

e Fuzzers (e.g. libFuzzer, AFL) can be really effective at
finding the inputs that trigger the unusual cases

Instead of using a symbolic executor and having it reason over paths,
we use a code coverage or “data coverage” guided fuzzer to brute force

the inputs

Tends to be faster than symbolic executors, works for some cases
where the symbolic executors do not (e.g. testfs)

) . TRA/L
Let’s get real: file systems s

Alex Groce talks about file system testing at NASA, JPL, and
how we’re using DeepState to test
https://github.com/agroce/testfs

jil of Bits IEEE SecDev 2018 30.09.2018 7

https://github.com/agroce/testfs

