
1

DeepState: Bringing
vulnerability detection
tools into the
development lifecycle

Peter Goodman (Trail of Bits)
Gustavo Grieco (Trail of Bits)
Alex Groce (Northern Arizona University)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Introductions

Peter Goodman
Senior Security Engineer

peter@trailofbits.com
Trail of Bits

Gustavo Grieco
Security Engineer

gustavo.grieco@trailofbits.com
Trail of Bits

Alex Groce
Associate Professor

alex.groce@nau.edu
Northern Arizona University

2
2

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Today’s workshop is interactive

Before beginning, please do one of the following in a terminal
on your computers:

Clone the ieee_secdev_2018 branch:

git clone https://github.com/trailofbits/deepstate -b ieee_secdev_2018

OR
Download and extract:

https://github.com/trailofbits/deepstate/archive/ieee_secdev_2018.zip

3

(1)

https://github.com/trailofbits/deepstate
https://github.com/trailofbits/deepstate/archive/ieee_secdev_2018.zip

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Today’s workshop is interactive

Go into the cloned/unzipped deepstate directory, and execute
the following:

$ vagrant up
$ vagrant ssh

If successful, this is what you should see:

vagrant@ubuntu-xenial $

4

(2)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

How do developers test code?

● Static Analysis
● Many tools available, most are commercial (e.g. Coverity)
● False positives continue to be a vexing problem
● 57% have never used one (JetBrains Survey)

● Unit Tests!
● Tooling is free
● Test for functionality and security
● Nearly everyone is familiar with the concepts
● Only 29% do not use unit tests (JetBrains Survey)

5

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Unit testing is great!

● Unit tests are a software assurance methodology
● Typically test individual functions, classes, or groups of related

functionality

● As code changes (e.g. improving an algorithm), unit tests help to
ensure that expected functionality or results remain the same

6

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Let’s write a unit test

Enter the exercises directory and open FirstTest.cpp

vagrant@ubuntu-xenial $ cd exercises
vagrant@ubuntu-xenial $ nano FirstTest.cpp

7

(1)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Let’s write a unit test

Here is what you will see inside of FirstTest.cpp
#include <deepstate/DeepState.hpp>

uint16_t Pow2(uint16_t x) {
 return x * x;
}

TEST(Math, PowersOfTwo) {
 ASSERT_EQ(Pow2(0), 0); // 0^2 == 0
 ASSERT_NE(Pow2(2), 3); // 2^2 != 3

 // Try some for yourself!
}

8

(2)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Let’s write a unit test

Here is what you will see inside of FirstTest.cpp
#include <deepstate/DeepState.hpp>

uint16_t Pow2(uint16_t x) {
 return x * x;
}

TEST(Math, PowersOfTwo) {
 ASSERT_EQ(Pow2(0), 0); // 0^2 == 0
 ASSERT_NE(Pow2(2), 3); // 2^2 != 3

 // Try some for yourself!
}

9

Function that we want
to test

(3)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Let’s write a unit test

Here is what you will see inside of FirstTest.cpp
#include <deepstate/DeepState.hpp>

uint16_t Pow2(uint16_t x) {
 return x * x;
}

TEST(Math, PowersOfTwo) {
 ASSERT_EQ(Pow2(0), 0); // 0^2 == 0
 ASSERT_NE(Pow2(2), 3); // 2^2 != 3

 // Try some for yourself!
}

10

Test case

(4)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Let’s write a unit test

Here is what you will see inside of FirstTest.cpp
#include <deepstate/DeepState.hpp>

uint16_t Pow2(uint16_t x) {
 return x * x;
}

TEST(Math, PowersOfTwo) {
 ASSERT_EQ(Pow2(0), 0); // 0^2 == 0
 ASSERT_NE(Pow2(2), 3); // 2^2 != 3

 // Try some for yourself!
}

11

Test case name and
test name

(5)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Let’s write a unit test

Here is what you will see inside of FirstTest.cpp
#include <deepstate/DeepState.hpp>

uint16_t Pow2(uint16_t x) {
 return x * x;
}

TEST(Math, PowersOfTwo) {
 ASSERT_EQ(Pow2(0), 0); // 0^2 == 0
 ASSERT_NE(Pow2(2), 3); // 2^2 != 3

 // Try some for yourself!
}

12

Assertions verifying
output is as expected

(6)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Let’s write a unit test

Here is what you will see inside of FirstTest.cpp
#include <deepstate/DeepState.hpp>

uint16_t Pow2(uint16_t x) {
 return x * x;
}

TEST(Math, PowersOfTwo) {
 ASSERT_EQ(Pow2(0), 0); // 0^2 == 0
 ASSERT_NE(Pow2(2), 3); // 2^2 != 3

 // Try some for yourself!
}

13

Homework!!!

(7)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Executing your first test

Please save and close FirstTest.cpp, and execute the
following command:

vagrant@ubuntu-xenial $ make exercise_1

Now, execute the following:

vagrant@ubuntu-xenial $./FirstTest

14

(1)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Executing your first test

Here is what you should see:

vagrant@ubuntu-xenial $./FirstTest
INFO: Running: Math_PowersOfTwo from FirstTest.cpp(7)

INFO: Passed: Math_PowersOfTwo

Our tests passed! This function must be correct, right?

15

(2)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Back to our test

Here is what you will see inside of FirstTest.cpp
#include <deepstate/DeepState.hpp>

uint16_t Pow2(uint16_t x) {
 return x * x;
}

TEST(Math, PowersOfTwo) {
 ASSERT_EQ(Pow2(0), 0); // 0^2 == 0
 ASSERT_NE(Pow2(2), 3); // 2^2 != 3

 // Try some for yourself!

 ASSERT_EQ(Pow2(65535), 4294836225);
}

16

 What does
 this do?

(1)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Back to our test

Here is what you will see inside of FirstTest.cpp
#include <deepstate/DeepState.hpp>

uint16_t Pow2(uint16_t x) {
 return x * x;
}

TEST(Math, PowersOfTwo) {
 ASSERT_EQ(Pow2(0), 0); // 0^2 == 0
 ASSERT_NE(Pow2(2), 3); // 2^2 != 3

 // Try some for yourself!

 ASSERT_EQ(Pow2(65535), 4294836225);
}

17

Let’s diagnose it!

We asked if this was true:
65535 * 65535 = 4294836225

We can express this in hexadecimal as:
0xFFFF * 0xFFFF = 0xFFFE_0001

And only the 0x0001 fits into a uint16_t

(2)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Back to our test

Here is what you will see inside of FirstTest.cpp
#include <deepstate/DeepState.hpp>

uint16_t Pow2(uint16_t x) {
 return x * x;
}

TEST(Math, PowersOfTwo) {
 ASSERT_EQ(Pow2(0), 0); // 0^2 == 0
 ASSERT_NE(Pow2(2), 3); // 2^2 != 3

 // Try some for yourself!

 ASSERT_EQ(Pow2(65535), 1);
}

18

 “correct”

(3)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Back to our test

Here is what you will see inside of FirstTest.cpp
#include <deepstate/DeepState.hpp>

uint32_t Pow2(uint16_t x) {
 return x * x;
}

TEST(Math, PowersOfTwo) {
 ASSERT_EQ(Pow2(0), 0); // 0^2 == 0
 ASSERT_NE(Pow2(2), 3); // 2^2 != 3

 // Try some for yourself!

 ASSERT_EQ(Pow2(65535), 4294836225);
}

19

 Fixed!

(4)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Unit testing is great… right?

● Unit tests help you to...
● Find bugs in your code

● Experimentally verify your code on some set of inputs

● Verify that the behavior of some code on some set of inputs stays
consistent over time and across changes

● But, unit tests are not a panacea
● It is up to YOU, the tester, to understand and test the boundary

conditions, and test for them

● This is harder for more complex code
20

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Can’t we just automate it?

● Ideally, we’d like something to figure out the best set of
inputs for a given test so we don’t have to (think so hard)

● Spoiler alert! DeepState is that system

● This is a “solved” problem
● Symbolic execution (e.g. KLEE, Manticore, Angr, S2E, etc.)

● Fuzzers (e.g. libFuzzer, AFL, Dr. Fuzz, Radamsa, zzuf, Peach, etc.)

● Developers don’t use existing solutions because they
don’t fit nicely into their existing workflow!

21

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Developers don’t use security testing tools

● Zero* developers use symbolic executors
● Hard to learn and use
● Difficult to integrate into a build/test cycle
● Confusing and easily crash/run forever/eat up memory

● Nearly zero* developers use fuzzers
● Requires custom harnesses and build system changes

● Security tools are built for bug hunters
● Work great for auditors, CTF contests, reverse engineers
● Confusing and alien for software developers

22

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Developers do use unit testing

● DeepState integrates symbolic testing and fuzz testing
into a Google Test-like unit testing framework
● Fits into existing developer workflow
● Easily integrates with existing code base and build system
● Easy to learn and use, especially if you are familiar with Google Test

● Improves software quality
● Also tests for correctness, not just security
● No false positives!

23

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Integrating DeepState is easy

24

● Header
● Library
● Test

cases
● Executor

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Writing unit tests with DeepState

● TEST, TEST_F
● TEST(UnitName, CaseName) creates a new test
● TEST_F is like TEST but with a class that performs setup and teardown

● ASSERT, CHECK
● ASSERT logs and error and stops execution if a condition fails
● CHECK is like ASSERT but logs an error and continues execution

● Examples:
● ASSERT(poly != y * z); ASSERT_NE(poly, y * z);

25

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Monitoring test progress in DeepState

● Logging in unit tests is valuable for monitoring progress,
debugging unusual outcomes

● Examples:
○ LOG(WARNING) << “hello” << “world!”;
○ ASSERT(true) << “Never printed because true is true”;
○ ASSERT(false) << “Always printed, test stops”;
○ CHECK(false) << “Always printed, test marked as ”

 << “failing but continues”;

26

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Creating “symbolic values” with DeepState

● Symbolic data types
● Convenient typedefs: symbolic_int, symbolic_char, …
● Explicit form: Symbolic<int>, Symbolic<std::string>, …

● Constraining symbolic values
● ASSUME, ASSUME_* macros add constraints onto symbolic values, e.g.

ensuring a value falls within a range

● Examples:
● symbolic_unsigned x, y, z;
● ASSUME_GT(x, 0); ASSUME_GT(y, 1); ASSUME_GT(z, 1);

27

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Discovering the original bug with DeepState

Here is what FirstTest.cpp looked like before our fix:
#include <deepstate/DeepState.hpp>

uint16_t Pow2(uint16_t x) {
 return x * x;
}

TEST(Math, PowersOfTwo) {
 ASSERT_EQ(Pow2(0), 0); // 0^2 == 0
 ASSERT_NE(Pow2(2), 3); // 2^2 != 3

 // Try some for yourself!

}

28

(1)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Discovering the original bug with DeepState

Here is how to use DeepState to discover the bug:
#include <deepstate/DeepState.hpp>

using namespace deepstate;

uint16_t Pow2(uint16_t x) {
 return x * x;
}

TEST(Math, PowersOfTwo) {
 ASSERT_EQ(Pow2(0), 0); // 0^2 == 0

 Symbolic<uint16_t> x;
 ASSUME_NE(x, 0);
 ASSERT_EQ(Pow2(x) / x, x) // forall x. (x^2)/x == x
 << "Pow2(" << x << ") / " << x << " != " << x;
} 29

(2)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

vagrant@ubuntu-xenial $ deepstate-angr ./FirstTest

Running Math_PowersOfTwo from FirstTest.cpp(7)
…
FirstTest.cpp(11): Checked condition
FirstTest.cpp(12): Pow2(258) / 258 != 258
Failed: Math_PowersOfTwo
Input: 01 02
Saving input to out/FirstTest.cpp/Math_PowersOfTwo/0cb988d042a7f28dd5fe2b55b3f5ac7a.fail
Running Math_PowersOfTwo from FirstTest.cpp(7)
FirstTest.cpp(11): Checked condition
FirstTest.cpp(12): Pow2(256) / 256 != 256
Failed: Math_PowersOfTwo
Input: 01 00
Saving input to out/FirstTest.cpp/Math_PowersOfTwo/25daad3d9e60b45043a70c4ab7d3b1c6.fail

Discovering the original bug with DeepState

30

(3)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

How did it do that?

31

x = symbolic()

x != 0

abandoncontinue

(1)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

How did it do that?

32

abandoncontinue

x != 0

x = symbolic() 16

16

(2)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

How did it do that?

33

abandoncontinue

x != 0

x = symbolic() 16

(3)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

How did it do that?

34

abandoncontinue

x = symbolic()

x != 0

0 0

0 0

16

(4)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

(1)Exercise 1.1

Enter the exercises directory and open LongLongOver.cpp

vagrant@ubuntu-xenial $ cd exercises
vagrant@ubuntu-xenial $ nano LongLongOver.cpp

To compile it, execute the following command:

vagrant@ubuntu-xenial $ make exercise_1.1

35

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

(1)Exercise 1.1

36

Write a symbolic unit test for overflow_ll_add for non
negatives x and y:

1. overflow_ll_add(x,y)==0 ⇒ x+y does not overflow
2. overflow_ll_add(x,y)==1 ⇒ x+y overflows

Write a DeepState test for (1) and test it. Then, write a
DeepState test for (2) and test it.

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

(2)Exercise 1.1

#include <deepstate/DeepState.hpp>
using namespace deepstate;

TEST(Math, NoOverflowAdd) {
 Symbolic<long long> x, y;
 // Fill me in!!!
 // Fill me in!!!
 // Fill me in!!!
 // Fill me in!!!
 // Fill me in!!!
}

37

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

(3)Exercise 1.1

#include <deepstate/DeepState.hpp>
using namespace deepstate;

TEST(Math, NoOverflowAdd) {
 Symbolic<long long> x, y;
 // Your goals:
 // 1) x and y should be non-negative
 // 2) if overflow_ll_add of x and y doesn’t overflow,
 // then verify that the result of the addition, z,
 // is greater than or equal to each of x and y
}

38

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

(4)Exercise 1.1

#include <deepstate/DeepState.hpp>
using namespace deepstate;

TEST(Math, NoOverflowAdd) {
 Symbolic<long long> x, y;

 ASSUME_GE(x, 0);
 ASSUME_GE(y, 0);
 ASSUME_EQ(overflow_ll_add(x, y), 0);

 long long z = x + y;

 ASSERT(z >= x && z >= y);
}

39

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

(4)Exercise 1.1

#include <deepstate/DeepState.hpp>
using namespace deepstate;

TEST(Math, OverflowAdd) {
 Symbolic<long long> x, y;

 ASSUME_GE(x, 0);
 ASSUME_GE(y, 0);
 ASSUME_EQ(overflow_ll_add(x, y), 1);

 long long z = x + y;

 ASSERT(z < x || z < y);
}

40

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

(5)

Running Math_NoOverflowAdd from LongLongOver.cpp(134)
...
Input: 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 7f
Running Math_NoOverflowAdd from LongLongOver.cpp(134)
...
Passed: Math_OverflowAdd
Input: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Saving input to
out/LongLongOver.cpp/Math_NoOverflowAdd/4ae71336e44bf9bf79d2752e234818a5.pass
Running Math_NoOverflowAdd from LongLongOver.cpp(134)
...
Passed: Math_OverflowAdd
Input: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01
Saving input to
out/LongLongOver.cpp/Math_NoOverflowAdd/cf404dc806178c245b5b4fe2531e6d8c.pass

Exercise 1.1

41

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

(6)

Running Math_OverflowAdd from LongLongOver.cpp(150)
LongLongOver.cpp(154): Checked condition
LongLongOver.cpp(155): Checked condition
LongLongOver.cpp(156): Checked condition
LongLongOver.cpp(161): Checked condition
Failed: Math_OverflowAdd
Input: 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 7f
Saving input to
out/LongLongOver.cpp/Math_OverflowAdd/1288b4cdc66d265fd60d3b52172ba717.fail

Exercise 1.1

42

 Why?

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

(7)Exercise 1.1

#include <deepstate/DeepState.hpp>
using namespace deepstate;

TEST(Math, OverflowAdd) {
 Symbolic<long long> x, y;

 ASSUME_GE(x, 0);
 ASSUME_GE(y, 0);
 ASSUME_EQ(overflow_ll_add(x, y), 1);

 long long z = x + y;

 ASSERT(z < x || z < y);
}

43

undefined
behavior

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

(8)Exercise 1.1

#include <deepstate/DeepState.hpp>
using namespace deepstate;

TEST(Math, OverflowAdd) {
 Symbolic<long long> x, y;

 ASSUME_GE(x, 0);
 ASSUME_GE(y, 0);
 ASSUME_EQ(overflow_ll_add(x, y), 1);

 volatile long long z = x + y;

 ASSERT(z < x || z < y);
}

44

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

(9)

Running Math_OverflowAdd from LongLongOver.cpp(150)
LongLongOver.cpp(154): Checked condition
LongLongOver.cpp(155): Checked condition
LongLongOver.cpp(156): Checked condition
Passed: Math_OverflowAdd
Input: 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 7f
Saving input to
out/LongLongOver.cpp/Math_OverflowAdd/1288b4cdc66d265fd60d3b52172ba717.pass

Exercise 1.1

45

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Exercise 2

For the next example, execute the following command:

vagrant@ubuntu-xenial $ make exercise_2

Now, execute the following:

vagrant@ubuntu-xenial $./Wallet

46

(1)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Exercise 2

Here is what you should see:

vagrant@ubuntu-xenial $./Wallet

Usage: ./Wallet <initial_balance> W|D <amount> [W|D <amount> [...]]

47

(2)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Wallet.hpp implementation

48

class Wallet;

struct Cheque {
 unsigned amount;
 Wallet *dest;
};

class Wallet {
 public:
 Wallet(void)
 : balance(0) {}

 explicit Wallet(unsigned initial_balance)
 : balance(initial_balance) {}

 void Deposit(unsigned amount) {
 balance += amount;
 }
 …

 private:
 unsigned balance;

(1)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Wallet.hpp implementation

49

unsigned Balance(void) const {
 return balance;
}

bool Withdraw(unsigned amount) {
 if (amount <= balance) {
 balance -= amount;
 return true;
 } else {
 return false;
 }
}

bool Transfer(Cheque cheque) {
 if (Withdraw(cheque.amount)) {
 cheque.dest->Deposit(cheque.amount);
 return true;
 } else {
 return false;
 }
}
…

(2)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Wallet.hpp implementation

50

bool MultiTransfer(const std::vector<Cheque> &cheques) {

 LOG(DEBUG)
 << "Processing " << cheques.size() << " cheques";

 unsigned total_to_withdraw = 0;
 for (auto cheque : cheques) {
 total_to_withdraw += cheque.amount;
 }

 if (balance < total_to_withdraw) {
 LOG(WARNING)
 << "Insufficient funds! Can't transfer " << total_to_withdraw
 << " from account with balance of " << balance;
 return false;
 }

 LOG(DEBUG)
 << "Withdrawing " << total_to_withdraw << " from account";

 for (auto cheque : cheques) {
 ASSERT(Transfer(cheque))
 << "Insufficient funds! Can't transfer " << cheque.amount
 << " from account with balance of " << balance;
 }

 return true;
}

(3)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Exercise 2: Testing Wallet.hpp

51

Write DeepState test cases to test the functionality of Wallet:
1. A valid withdrawal decreases the account balance
2. A failed withdrawal preserves the account balance
3. A self-transfer preserves the account balance
4. A multi transfer preserves the total balance between two

accounts.

Write DeepState tests for 1, 2, and 3 and execute them with
deepstate-angr. Then, write a DeepState test for 4 and
execute it as well.

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Wallet_tests.cpp test fixture

52

class WalletTests : public deepstate::Test {
 public:
 WalletTests(void)
 : account1(initial_balance1),
 account2(initial_balance2) {}

 uint32_t InitialBalance(void) const {
 return initial_balance1 + initial_balance2;
 }

 uint32_t TotalBalance(void) const {
 return account1.Balance() + account2.Balance();
 }
 protected:

 symbolic_unsigned initial_balance1;
 symbolic_unsigned initial_balance2;

 Wallet account1;
 Wallet account2;

 symbolic_unsigned amount1;
 symbolic_unsigned amount2;
};

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Wallet tests using the WalletTest fixture

53

TEST_F(WalletTests, WithdrawalDecreasesAccountBalance) {
 // Fill me in!!!
}

TEST_F(WalletTests, FailedWithdrawalPreservesAccountBalance) {
 // Fill me in!!!
}

TEST_F(WalletTests, SelfTransferPreservesAccountBalance) {
 // Fill me in!!!
}

TEST_F(WalletTests, MultiTransferPreservesBankBalance) {
 // Fill me in!!!
}

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Withdrawal and transfer properties

54

TEST_F(WalletTests, WithdrawalDecreasesAccountBalance) {
 ASSUME_GT(amount1, 0);
 ASSUME(account1.Withdraw(amount1));
 ASSERT_LT(account1.Balance(), initial_balance1);
}

TEST_F(WalletTests, FailedWithdrawalPreservesAccountBalance) {
 …
}

TEST_F(WalletTests, SelfTransferPreservesAccountBalance) {
 …
}

(1)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Withdrawal and transfer properties

55

TEST_F(WalletTests, WithdrawalDecreasesAccountBalance) {
 ASSUME_GT(amount1, 0);
 ASSUME(account1.Withdraw(amount1));
 ASSERT_LT(account1.Balance(), initial_balance1);
}

TEST_F(WalletTests, FailedWithdrawalPreservesAccountBalance) {
 ASSUME(!account1.Withdraw(amount1));
 ASSERT_EQ(account1.Balance(), initial_balance1);
}

TEST_F(WalletTests, SelfTransferPreservesAccountBalance) {
 …
}

(2)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Withdrawal and transfer properties

56

TEST_F(WalletTests, WithdrawalDecreasesAccountBalance) {
 ASSUME_GT(amount1, 0);
 ASSUME(account1.Withdraw(amount1));
 ASSERT_LT(account1.Balance(), initial_balance1);
}

TEST_F(WalletTests, FailedWithdrawalPreservesAccountBalance) {
 ASSUME(!account1.Withdraw(amount1));
 ASSERT_EQ(account1.Balance(), initial_balance1);
}

TEST_F(WalletTests, SelfTransferPreservesAccountBalance) {
 (void) account1.Transfer({amount1, &account1});

 ASSERT_EQ(account1.Balance(), initial_balance1)
 << "Account1's balance has changed with a self transfer of "
 << amount1;
}

(3)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Multi-transfer property

57

TEST_F(WalletTests, MultiTransferPreservesBankBalance) {
 const auto old_balance1 = account1.Balance();
 const auto old_balance2 = account2.Balance();

 const auto transfer_succeeded = account1.MultiTransfer({
 {amount1, &account2},
 {amount2, &account2},
 });

 if (!transfer_succeeded) {
 CHECK(old_balance1 == account1.Balance())
 << "Account1's balance has changed from "
 << old_balance1 << " to " << account1.Balance();

 CHECK(old_balance2 == account2.Balance())
 << "Account2's balance has changed from "
 << old_balance2 << " to " << account2.Balance();

 } else {
 CHECK(InitialBalance() == TotalBalance())
 << "Balance in bank has changed from "
 << InitialBalance() << " to " << TotalBalance();
 }
}

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

End of part 1

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Welcome back

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Summary of part 1

● Unit testing is great, but making good unit tests is hard
● Easy to write tests
● Just as easy to miss corner cases

● DeepState turns unit testing into proving
● Instead of writing tests with specific inputs to test, use symbolic

variables/values to test for all inputs

60

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Overview of part 2

● The leaky abstraction: symbolic executions tactics
● Helping to mitigate the “path explosion” problem

● When one approach fails, try, try, try again
● We saw deepstate-angr, but there’s more than just that

● Other input-finding backends: Manticore, AFL, libFuzzer, Dr. Fuzz, S2E

● Time to get real
● Testing file system durability: is filesystem metadata consistent in the

face of arbitrary shutdowns?

61

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Sometimes abstractions leak through

● Symbolic execution is a powerful program analysis
technique
● Explores all feasible paths through a program, but what does this

mean, really?

● If execution reaches an if statement, then a symbolic executor will try
to discover (e.g. via a SMT theorem prover) inputs that drive execution
down both paths

● Any time a symbolic executor is faced with more than one possible
paths to explore, it chooses to explore all of them (e.g. via enqueuing
them)

62

(1)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Sometimes abstractions leak through

What if we have an for loop with a symbolic upper bound?

TEST(PathExplosion, GoesBoom) {
 symbolic_int max_i;
 for (int i = 0; i < max_i; ++i) {
 // A
 }
 // B
}

63

(2)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Sometimes abstractions leak through

64

(3)

i = 0
max_i = symbolic()

i < max_i

B A
i < max_i

B A

...

B A

..
.

.

.

.

TEST(PathExplosion, GoesBoom) {
 symbolic_int max_i;
 for (int i = 0; i < max_i; ++i) {
 // A
 }
 // B
}

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Sometimes abstractions leak through

● Symbolic upper bounds to loops can cause unbounded
forking
● Every iteration will cause the symbolic executor to explore both paths

● Imagine if there was a nested loop, or an if statement in the loop

● These constructs are common in real code
● Need a way to mitigate the path explosion

● Solution: sacrifice some generality to get performance by “pre-forking”
and unrolling the loops in each fork

65

(4)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Sometimes abstractions leak through

With the “pumping” tactic of gener

TEST(PathExplosion, DoesntGoBoom) {
 symbolic_int sym_max_i;
 for (int i = 0, max_i = Pump(sym_max_i);
 i < max_i; ++i) {
 // A
 }
 // B
} 66

(5)

Not symbolic!

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Sometimes abstractions leak through

67

(6)

i = 0
sym_max_i = symbolic()
max_i = Pump(sym_max_i)

TEST(PathExplosion, DoesntGoBoom) {
 symbolic_int sym_max_i;
 for (int i = 0, max_i = Pump(sym_max_i);
 i < max_i; ++i) {
 // A
 }
 // B
}

max_i = 0 max_i = 1 max_i = 2 max_i = 3 max_i = 4

B A

B

A

A

B

A

A

A

B

A

A

A

A

Creates multiple forks, where in each fork,
sym_max_i is concretized to its next
smallest value, and that value is returned

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Sometimes abstractions leak through

● Pumping is one way to mitigate path explosion in
symbolic execution
● Perhaps a better name would be “MinPump” or “MinValues”

● Arbitrary policies are possible, e.g. MaxPump, MinMaxPump, etc.

● Idiom exists to improve scalability of symbolic execution
● Usage of this idiom tends toward concretizing loop upper bounds

● This is a useful semantic to “attach onto” for test case reduction

● But what if none of these idioms “solve” path explosion?
68

(7)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

But what if we can’t mitigate path explosion?

● Sometimes we can’t easily mitigate path explosion with
idioms/tactics like Pump
● No fear, libFuzzer is here!

● DeepState supports multiple input-generation backends
● Manticore, Angr, AFL, libFuzzer, AFL, Dr. Fuzz, and S2E

● If one doesn’t work or is too slow, try another!

69

(1)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

But what if we can’t mitigate path explosion?

● Fuzzers (e.g. libFuzzer, AFL) can be really effective at
finding the inputs that trigger the unusual cases
● Instead of using a symbolic executor and having it reason over paths,

we use a code coverage or “data coverage” guided fuzzer to brute force
the inputs

● Tends to be faster than symbolic executors, works for some cases
where the symbolic executors do not (e.g. testfs)

70

(2)

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Let’s get real: file systems

Alex Groce talks about file system testing at NASA, JPL, and
how we’re using DeepState to test
https://github.com/agroce/testfs

71

https://github.com/agroce/testfs

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

Trail of Bits | IEEE SecDev 2018 | 30.09.2018

